期刊文献+

循环速率及低温环境对复合生态床修复北方景观水体的影响

Effect of Recycling Rate and Low Temperature on Remedying Northern Landscaping Water by Ecological Filter
下载PDF
导出
摘要 以天然矿物质沸石及煤渣为基质构建新型复合生态滤床,分层布设并采用下向流-上向流联合运行方式,修复北方微污染景观水体.通过出水循环方式下的动态实验,考察循环速率、低温环境对污染物去除过程的影响,深入分析水体氮、磷在系统内的转换过程及修复机理.结果表明,加快循环速率提高了NH_4^+-N及TN的去除率,且使得硝化作用进行得更加迅速和彻底,补充了氮从系统中去除的好氧反硝化途径.温度下降过程中,动态运行24 h及48 h的去除率无明显变化,TP去除率明显降低,分别由15~25℃时的72%、77.4%降低到0~5℃的42.4%及60.2%;温度是TP去除的主要影响因索,对NH_4^+-N影响不大. Natural zeolite and coal cinder were chosen as main compound of the substrate layered ecological bed instead of traditional filling to bio-remedy the static lake water in Northern China, and its running mode was upward combining with downwards flow. Dynamic experiments were carried to study the effect of main factors on contamination removal rate by zeolite ecological filter. It showed that Removal ratios of NH4^+ -N and TN were promoted with recycling rate increase. The increase of recycling rate made the nitrification more rapidly and completely, and the transition approach of nitrogen was shortened. And the aerobic denitrification was added in the nitrogen removal process, when the temperature declined, the instant removal rate of NH4^+- N fell, but the removal rate of remained when it operated for 24 housr and 48 hours respectively. It means that rest time played an important role in NH4^+ -N removal; removal rates of TP after 24 h and 48 h decreased when temperature declined evidently, and it was from 72% and 77.4% in 15-25 ℃ to 42.4% and 60.2% in 0--5 ℃respectively. Environment temperature was the important factor for TP removal.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2009年第6期805-808,共4页 Journal of Beijing University of Technology
基金 国家自然科学基金项目(50809037) 上海大学创新基金(10-0111-07-010) 上海市优秀青年教师科研专项(37-0111-07-701) 国家科技支撑计划项目(2008BAC32B03)
关键词 循环速率 生态床 景观水体 低温 recycling rate ecological filter landscaping water low temperature
  • 相关文献

参考文献11

  • 1刘书宇,马放,姜钦鹏.优势菌群在复合生态床修复景观水体中的强化能力研究[J].环境科学,2007,28(6):1204-1208. 被引量:10
  • 2BERENDSE F.Organic matter accumulation and nitrogen mineralization during secondary succession in heath land eco systems[J].Journal of Ecology,1990,78(2):413-427.
  • 3HOEWYK D V,GROFFMAN P M,ERIK K,et al.Soil nitrogen dynamics in organic and mineral soil calcareous wethnds in eastern New York[J].Soil Science society of America Journal,2000,64(6):2168-2173.
  • 4CHEN R,TWILLEY R R.A simulation model of organic matter and nutrient accumulation in mangrove wetland soils[J].Biogeochemistry,1999b,44(1):93-118.
  • 5WILSON D J,JEFFERIES R L.Nitrogen mineralization,plant growth and goose herbivory in an Arctic coastal eco system[J].Journal of Ecology,1996,84(6):841-851.
  • 6袁东海,景丽洁,高士祥,尹大强,王连生.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55. 被引量:165
  • 7JOHNSTON C A.Sediment and nutrient retention by freshwater wetlands:effects on surface water quality[J].Critical Reviews in Environmental Control,1991,21(5,6):491-565.
  • 8HALEEM D A E,VON W F,MOTER A,et al.Phylogenetic analysis of rhizosphere associated th subclass proteo bacterial ammonia oxidizers in a municipal wastewater treatment plant based on hizoremediation technology[J].Letters in Applied Microbiology,2000,31(4):34-38.
  • 9DONALD W,KIRK·CHARLES Q,JIA·JINYING YAN,et al.Torrenueva,wastewater remediation using coal ash[J].Mater Cycles Waste Manage,2003,5(1):5-8.
  • 10ARIAS C A,BUBBA M D,BRIX H.Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J].Water research,2001,35(5):1159-1168.

二级参考文献39

  • 1周巧红,吴振斌,付贵萍,成水平,贺锋.人工湿地基质中酶活性和细菌生理群的时空动态特征[J].环境科学,2005,26(2):108-112. 被引量:45
  • 2彭永臻,刘智波,Takashi MINO.污水强化生物除磷的生化模型研究进展[J].中国给水排水,2006,22(4):1-5. 被引量:21
  • 3Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing country; a review[J]. Ecological Engineering, 2001,16 : 545-- 560.
  • 4Gopal B. Natural and constructed wetlands for wastewater treatment: potential and problems[J]. Water Science and Technology, 1999,40(3) :27--35.
  • 5Drizo A, Frost CA, Grace J, et al. Physico-chemical screening of phosphate removing substrates for use in constructed wetland systems[J]. Water Research, 1999, 33(17) : 3595-- 3602.
  • 6Arias C A, Bubba M D, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [ J ].Water research,2001,35(5) : 1159 - 1168.
  • 7Bubba M D, Arias C A, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm[J]. Water Research, 2003. 3390 -- 3340.
  • 8Yuan G, Lakulich L M. Phosphate adsorption in relationship to extractable iron and aluminum in spodosols [ J ]. Soil Sci. Soc.Am.J. , 1994,58:343--346.
  • 9Bastin O, Janssens F, Dutfey J, et al. Phosphorus removal by synthetic iron oxide-gypsum compound[J]. Ecological Engineering, 1999, 12:339--351.
  • 10Chueng K C, Venkitachalam T H. Improving phosphate removal of sand infiltration system using alkaline fly ash [ J ].Chemosphere, 21 : 243 - 249.

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部