期刊文献+

内燃机余热甲醇催化重整制氢装置设计及实验研究 被引量:1

Apparatus Design and Experimental Study of Methanol Steam Catalytic Reforming for H_2 Production Using Engine Exhaust Heat
下载PDF
导出
摘要 氢气随车携带不便,为了能在线产生富氢气体供给内燃机燃烧,并大幅度提高内燃机的热效率,降低排放,降低热、噪声的污染,提出应用内燃机尾气余热对甲醇进行催化重整以产生氢气的方法.设计了一套内燃机余热甲醇催化重整制氢装置,在内燃机排气余热和催化剂的共同作用下,把甲醇水溶液重整成富氢气体.重整反应器为蜂窝陶瓷载体,重整催化剂为Cu/Zn/Al/Zr,采用管式换热器对载体进行加热,甲醇水溶液在载体孔道中发生催化重整反应.实验结果表明:随着发动机排气温度的增加,重整器产氢率提高,在排气温度为350℃时,重整气中氢气的体积分数达到41.9%.达到了实验预期要求. In order to solve the problem of carrying H2 on vehicle, this papper proposes a new method to produce H2 on board by using energy of engine exhaust heat to support methanol steam reforming. The engine thermal efficiency can be largely improved and engine pollutants, thermal and noise emissions can be further reduced by the mixed combustion of fuel and the hydrogen-rich reformed gas inducted into the cylinders produced by this method. In this paper an apparatus was designed to produce hydrogen-rich gas by methanol steam catalytic reforming using engine exhaust heat. The reformed reactor was basd on a porous ceramic substrate using Cu/Zn/AI/Zr as reforming catalysts and a tube-type heat exchanger to heat the ceramic reactor to accomplish the reforming reaction of methanol/water solution in the ceramic pores. The engine test showed that hydrogen volume fraction in the reformed gas increased with the engine exhaust temperature and reached a maximum of 41.9% at the exhaust temperature of 350 ℃
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2009年第6期815-819,共5页 Journal of Beijing University of Technology
基金 北京市自然科学基金资助项目(3082004) 北京市教育委员会科研基地建设项目(0050005366901)
关键词 内燃机余热 甲醇水蒸气重整 催化剂 设计 实验 engine exhaust heat methanol steam reforming catalysts design test
  • 相关文献

参考文献10

二级参考文献43

  • 1卢涛,黄超,罗兵.转炉煤气回收系统文氏管喷淋降温与流动数值模拟[J].石油化工高等学校学报,2006,19(3):84-87. 被引量:4
  • 2潘相敏,宋小瑜,周伟,马建新.甲醇组合重整制氢CuZnAlZr催化剂简单制备法[J].化工学报,2004,55(S1):95-98. 被引量:1
  • 3余立挺,马建新.CuZnAlZr催化剂上甲醇氧化水蒸气重整制氢 Ⅰ.催化剂组成的优化[J].催化学报,2004,25(7):523-528. 被引量:18
  • 4[1]Srinivasant S, Velve O A, Manko D J. High energy efficiency and high power density PEMFC-electrode kinetics and mass transport[J]. J Power Sources, 1991, 36(3): 299-320.
  • 5[2]Schmidt V M, Brockerhoff P, Hohlein B, et al. Utilization of methanol for polymer electrolyte fuel cells in mobile systems[J]. J Power Source, 1994, 49(1-3): 299-313.
  • 6[3]Shoesmith J P, Collins R D, Oakley M J, et al. Status of solid polymer fuel cell system development[J]. J Power Source, 1994, 49(1-3):129-142.
  • 7[5]Thomas Rampe, Angelika Heinzel, Bernhard Vogel. Hydrogen generation from biogenic and fossil fuels by autothermal reforming[J]. J Power Sources, 2000, 86(1-2): 536-541.
  • 8[6]Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions[J]. J Power Sources, 2000, 87(1-2): 28-38.
  • 9[7]Santos A, Menendez M, Santamaria. Partial oxidation of methane to carbon monoxide and hydrogen in a fluidized bed reactor[J]. Catal Today, 1994, 21(2-3): 481-488.
  • 10[8]Zanfir M, Gavriilidis A. Modelling of a catalytic plate reactor for dehydrogenation- combustion coupling[J]. Chem Eng Sci, 2001, 56(8):2671-2683.

共引文献38

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部