期刊文献+

基于叠加训练序列的稀疏信道估计(英文)

Sparse Channel Estimation Based on Superimposed Training
下载PDF
导出
摘要 对于稀疏多径衰落信道,提出了一种叠加训练序列和匹配跟踪算法相结合的信道估计方法。为了提高系统带宽效率,采用迭代的叠加训练估计信道响应,该方法将一低功率周期性的训练序列直接叠加于信息序列,利用接收数据的均值求得信道响应,不需要任何额外带宽资源。在许多无线通信环境中,信道呈现稀疏特性,利用该稀疏特性,采用匹配跟踪算法估计信道响应中的非0点,以此可以降低加性高斯白噪声引起的性能损失。通过计算机仿真表明,本文的方法可以达到很好信道估计性能。 For sparse multi-path fading channel, a channel estimation method using superimposed straining combined with matching pursuit (MP) algorithm is presented. In order to improve the efficiency of system bandwidth, an iterative superimposed straining based channel estimation method is presented. In this method, a periodic training sequence with low power is superimposed to the information sequence at transmitter. With the mean of received data, channel parameters can be estimated without consuming any extra system bandwidth at receiver. Channels with a sparse impulse response arise in a number of wireless communication environments, exploiting this characteristic, a matching pursuit (MP) algorithm is utilized to estimate the nonzero taps of channel coefficients, so performance loss caused by AWGN can be reduced. From the result of computer simulations, the proposed method can achieve good channel estimation performance is shown.
出处 《科学技术与工程》 2009年第18期5364-5368,共5页 Science Technology and Engineering
关键词 信道估计 稀疏信道 叠加训练序列 匹配跟踪 channel estimation sparse channel superimposed training
  • 相关文献

参考文献12

  • 1Preisig J C, Deane G B. Surface wave focusing and acoustic communications in the surf zone. Journal of Acoustical Society of America, 2004; 116( 1 ) :2067--2080.
  • 2Fevrier I J, Gelfand S B, Fitz M P. Reduced complexity decision feedback equalization for multipath channels with large delay spreads. IEEE Trans Commun, 1999 ;47:927--937.
  • 3Ariyavisitakul S, Sollenberger N R, Greenstein L J. Tap selectable decision-feedback equalization. IEEE Trans Commun, 1997 ; 45 : 1497--1500.
  • 4Gross J H,Etter D M. Comparison of echo cancellation algorithmsfor the adaptive delay filter. Proc IEEE VTC' 92, USA, Denver, Co, 1992 ; 1:574--576.
  • 5Sugiyama A, Sato H, Hirano A, et al. A fast convergence algorithm for adaptive FIR filters under computational constraint for adaptive tap-position control. IEEE Trans Circuits Syst II, 1996 ; 43 ( 9 ) : 629--636.
  • 6Raghavendra M R, Giridhar K, Improving channel estimation in OFDM systems for sparse multipath channels. In Proc of IEEE Signal Proc,2005, 12:52--55.
  • 7Carbonelli C, Vedantam S, Mitra U. Sparse channel estimation with zero tap detection. 2004 IEEE International Conference on Communications, Paris, IEEE Press, 2004 ;6 : 3173--3177.
  • 8Orozco-Lugo A G. Channel estimation using implicit training. IEEE Trans. Signal Processing,2004 ;52 : 240--254.
  • 9Tugnait J K, Luo W. On channel estimation using superimposed training and first-order statistics. IEEE Communications Letters, 2003 ;07 (9) :413----415.
  • 10Rao B D. Signal processing with the sparseness constraint. Proc, ICASSP' 98, Seattle, WA, 1998 ;3 : 1861--1864.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部