期刊文献+

改进蚁群算法在动态交通分配中的应用研究 被引量:4

Study on Application of Improved Ant Algorithm in Dynamic Traffic Assignment
下载PDF
导出
摘要 将蚁群算法用于交通分配中最优路径求解,考虑到实际路网中路段的通行时间受到交通量的影响,提出了一种改进的蚁群算法。算法对基本蚁群算法的信息素更新方程和启发信息进行适当改进,即用车辆在路段的行驶时间代替路段长度对信息素进行更新,并在启发信息中引入新的参数以加强搜索方向性。将改进后的蚁群算法结合增量分配法进行应用。用一个算例对算法的有效性进行验证。 Ant algorithm is used to solve the optimal path in traffic assignment, considering travel time on practical road network is affected by traffic volume, an improves ant algorithm was brought forth. , which formulation of pheromone renew and heuristic information in basic ant algorithm is improved properly. The pheromone was renewed by using the travel time of vehicles on the road sections had replaced the length of road sections. To strength search direction a new parameter was introduced into developmental information. Application by combining improved ant algorithm with increment assignment method, a simple numerical example is given to show the new algorithm's efficiency.
出处 《科学技术与工程》 2009年第18期5410-5414,共5页 Science Technology and Engineering
关键词 交通分配 蚁群算法 增量分配法 道路网络 traffic assignment ant algorithm increment assignment method road network
  • 相关文献

参考文献6

二级参考文献16

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 2[1]M Dorigo,V Maniezzo and A Colorni.Positive feedback as a search strategy[R].Technical Report 91-016,Dipartimento di Elettronica,Politecnico di Milano,IT,1991.
  • 3[2]M Dorigo,G Di Caro and L M Gambardella.Ant algorithms for discrete optimization[J].Artificial Life,1999,5(2):137-172.
  • 4[6]M Dorigo,V Maniezzo and A Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,1996,26(1): 29-41.
  • 5[2]Dorigo M,Gambardella L M.Ant colony system: a cooperative learning approach to the travelling salesman problem[J].IEEE Transaction,1997,1(1):53-66.
  • 6[4]唐策善,黄刘生.数据结构[M].北京:高等教育出版社,2001.
  • 7[5]杨新苗.城市公交优先发展的关键技术研究[D].南京:东南大学,2001.
  • 8Dorigo M,Manieiezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agent[J].IEEE Transaction on Systems,Man,and Cybernetics,1996,26 (1):29-41.
  • 9Dorigo M,Gambardella L M.A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation.1997,1 (1):53-66.
  • 10Dorigo M,Cambardella L M.A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) : 53-66.

共引文献113

同被引文献41

  • 1靳凯文,李春葆,秦前清.基于蚁群算法的最短路径搜索方法研究[J].公路交通科技,2006,23(3):128-130. 被引量:41
  • 2王祺国,徐旭.响应面方法在路面可靠度分析中的应用[J].中外公路,2006,26(4):62-65. 被引量:14
  • 3何征;伊藤裕二.虚拟现实仿真软件在土木工程中的应用[A]上海,2009256-261.
  • 4Ye X;Yang Y;Zou L.Research on the application of virtual reality technology in transportation[A]湖北武汉,20102887-2890.
  • 5Ayres G,Mehmood R. On discovering road traffic information using virtual reality simulations[A].Cambridge,2009.411-416.
  • 6Van den Berg J,Sewall J,Lin M. Virtualized traffic:Reconstructing traffic flows from discrete spatiotemporal data[A].New Orleans LA,2009.183-190.
  • 7Sang B,Mizuno K,Fukui Y. Introducing recognition ratios for urban traffic flow simulation in virtual cities[A].New York,2009.267-270.
  • 8Wang C;Chen G;Liu Y.Virtual-reality based integrated traffic simulation for urban planning[A]湖北武汉,20081137-1140.
  • 9费娜.虚拟现实技术在城市交通仿真系统中的应用研究[D]天津:天津城市建设学院电子与信息工程系,2009.
  • 10Yang A;Chen W;Gao L.Minmum-cost of road network planning based on max-min ant algorithm[A]浙江杭州,20102171-2174.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部