期刊文献+

Pole-Based Approximation of the Fermi-Dirac Function

Pole-Based Approximation of the Fermi-Dirac Function
原文传递
导出
摘要 Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期729-742,共14页 数学年刊(B辑英文版)
基金 supported by the Department of Energy (No.DE-FG02-03ER25587) the Office of Naval Research(No.N00014-01-1-0674) an Alfred P.Sloan Research Fellowship and a startup grant from University of Texas at Austin
关键词 Contour integral Fermi-Dirac function Rational approximation 狄拉克函数 费米 逼近 极点 结构计算 复杂性 极大 电子
  • 相关文献

参考文献15

  • 1Baroni, S. and Giannozzi, P., Towards very large-scale electronic-structure calculations, Europhys. Lett., 17(6), 1992, 547-552.
  • 2Ceriotti, M., Kuhne, T. D. and Parrinello, M., A hybrid approach to Fermi operator expansion, 2008, preprint, arXiv:0809.2232v1.
  • 3Ceriotti, M., Kuhne, T. D. and Parrinello, M., An effcient and accurate decomposition of the Fermi operator, J. Chem. Phys., 129(2), 2008, 024707.
  • 4Goedecker, S. and Colombo, L., Efficient linear scaling algorithm for tight-binding molecular dynamics, Phys. Rev. Lett., 73(1), 1994, 122-125.
  • 5Goedecker, S. and Teter, M., Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals, Phys. Rev. B, 51(15), 1995, 9455-9464.
  • 6Goedecker, S., Linear scaling electronic structure methods, Rev. Mod. Phys., 71(4), 1999, 1085- 1123.
  • 7Greengard, L. and Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73(2), 1987, 325-348.
  • 8Hale, N., Higham, N. J. and Trefethen, L. N., Computing A^α, log(A), and related matrix functions by contour integrals, SIAM J. Numer. Anal., 46(5), 2008, 2505- 2523.
  • 9Krajewski, F. R. and Parrinello, M., Stochastic linear scaling for metals and nonmetals, Phys. Rev. B, 71(23), 2005, 233105.
  • 10Liang, W. Z., Baer, R., Saravanan, C., et al, Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials, J. Comput. Phys., 194(2), 2004, 575-587.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部