期刊文献+

Error Estimates for Finite-Element Navier-Stokes Solvers without Standard Inf-Sup Conditions

Error Estimates for Finite-Element Navier-Stokes Solvers without Standard Inf-Sup Conditions
原文传递
导出
摘要 The authors establish error estimates for recently developed finite-element methods for incompressible viscous flow in domains with no-slip boundary conditions.The methods arise by discretization of a well-posed extended Navier-Stokes dynamics for which pressure is determined from current velocity and force fields.The methods use C1 elements for velocity and C0 elements for pressure.A stability estimate is proved for a related finite-element projection method close to classical time-splitting methods of Orszag,Israeli,DeVille and Karniadakis.
作者 Robert L.PEGO
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期743-768,共26页 数学年刊(B辑英文版)
基金 Project supported by the National Science Foundation (Nos.DMS 06-04420 (RLP),DMS 08-11177(JGL)) the Center for Nonlinear Analysis (CNA) under National Science Foundation Grant (Nos.0405343,0635983)
关键词 Time-dependent incompressible flow Projection method Backward facing step Driven cavity Stokes pressure Leray projection Obtuse corner Recycling Stokes方程 误差估计 域元素 有限元 Inf文件 求解器 标准 滑移边界条件
  • 相关文献

参考文献27

  • 1Armaly, B. F., Durst, F,, Pereira, J. C. F., et al, Experimental and theoretical investigation of backward- facing step flow, J. Fluid Mech., 127, 1983, 473-496.
  • 2Barth, T., Bochev, P., Gunzburger, M., et al, A taxonomy of consistently stabilized finite element methods for the Stokes problem, SIAM d. Sci. Comput., 25 2004, 1585- 1607.
  • 3Bochev, P. B., Dohrmann, C. R., and Gunzburger, M. D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Nurner. Anal., 44, 2006, 82 -101.
  • 4Brown, D. L,, Cortez, R. and Minion, M. L., Accurate projection methods for the incompressible Navier- Stokes equations, J. Comput. Phys., 168, 2001, 464-499.
  • 5Botella, O. and Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids, 27, 1998, 421-433.
  • 6Ciarlet, P. G., The Finite Element Methods for Elliptic Problems, North Holland, Amsterdam, 1978.
  • 7E, W. and Liu, J.-G., Gauge method for viscous incompressible flows, Commun. Math. Sci., 1, 2003, 317-332.
  • 8de Veubeke, B. F., A conforming finite element for plate bending, Int. J. Solid~ Structures, 4, 1968, 95 -108.
  • 9Girault, V. and Raviart, P-A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.
  • 10Grubb, G. and Solonnikov, V. A., Reduction of the basic initial-boundary value problems for the Navier- Stokes equations to initial-boundary value problems for nonlinear parabolic systems of pseudodifferential equations, J. Soviet Math., 56, 1991, 2300-2308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部