摘要
针对中长期电力负荷预测"小样本"、"贫信息"、"不确定"、"非线性"等特点,提出了基于最小二乘支持向量机算法与等维新息技术的改进灰色Verhulst模型,并将该模型用于具有"S型"增长或处于饱和增长状态的中长期电力负荷预测。根据原始数据建立了灰色Verhulst模型,利用LS-SVM算法对模型中的参数进行了估计,基于等维新息递补预测法对负荷数据进行了预测。实例计算结果表明,基于该模型得到的预测结果相对误差在3%以内,与传统预测模型相比,采用文中的模型可获得更高的预测精度。
According to such features in middle and long term load forecasting as small samples, poor information, uncertainty and nonlinearity, an improved Verhnlst model based on least square-support vector machine (LS-SVM) algorithm and equal-dimension and new-information technique is built and applied to the middle and long term load forecasting for load growth in S-type or load growth being saturated. The parameters of the model are evalutated by LSSVM algorithm and the load data is forecasted by equaldimension and new-information addition prediction. Case study results show that the relative errors of forecasting results by the proposed modes are less than 3%, thus in comparison with traditional forecasting models, the proposed model can offer more accurate forecasting results.
出处
《电网技术》
EI
CSCD
北大核心
2009年第18期124-127,共4页
Power System Technology
关键词
中长期负荷预测
灰色VERHULST模型
最小二乘支持向量机算法
等维新息技术
middle and long term load forecasting
gray Verhulst model
least square support vector machines algorithm
equal dimension and new information technology