期刊文献+

一种基于半监督学习的多模态Web查询精化方法 被引量:2

Multi-Modal Web Search Query Refinement Based on Semi-Supervised Learning
下载PDF
导出
摘要 Web搜索系统往往通过与用户的交互来精化查询以提高搜索性能.除文字之外,网页中还存在着大量其它模态的信息,如图像、音频和视频等.以往对于查询精化的研究很少涉及对多模态信息的利用.文中提出了一种基于半监督学习的多模态Web查询精化方法M2S2QR,将Web查询精化转化为一个机器学习问题加以解决.首先,基于用户判断后的网页信息,分别为不同模态训练相应的学习器,然后利用未经用户判断的网页信息来提高学习器性能,最后将不同模态学习器结合起来使用.实验验证了文中方法的有效性. Web search systems usually improve search performance by interacting with users to refine queries. In addition to text information, usually a large amount of information of other mo- dalities, such as image, audio and video, exist in Web pages. Few previous researches on Web query refinement, however, try to exploit the multi-modal information. This paper proposes a multi-modal Web search query refinement method M2S2QR based on semi-supervised learning, which transforms Web search query refinement into a machine learning problem. First, based on the information given by Web pages judged by users, classifiers are trained for different modali- ties, respectively. Then, Web pages that have not been judged by users are used to help improve the performance of the classifiers. Finally the classifiers of different modalities are combined to use. Experiments validate the effectiveness of the proposed method.
出处 《计算机学报》 EI CSCD 北大核心 2009年第10期2099-2106,共8页 Chinese Journal of Computers
基金 国家自然科学基金(60635030 60721002) 江苏省自然科学基金(BK2008018)资助
关键词 机器学习 半监督学习 多模态信息 WEB搜索 查询精化 machine learning semi-supervised learning multi-modal information Web search query refinement
  • 相关文献

参考文献28

  • 1Silverstein C, Henzinger M, Marais H, Moricz M. Analysis of a very large AltaVista query log. Digital Systems Research Center, Technical. Report 1998-014, 1998.
  • 2Blum A, Mitchell T. Combining labeled and unlabeled data with co-training//Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison, WI, 1998: 92-100.
  • 3Rocchio J J. Relevance feedback in information retrieval// Salton G ed. The SMART Retrieval System. Englewood Cliffs, NJ: Prentice-Hall, 1971.
  • 4Ide E. New experiments in relevance feedback//Salton G ed. The SMART Retrieval System. Englewood Cliffs, NJ: Prentice-Hall, 1971.
  • 5Salton G, Buekley C. Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 1990, 37(4): 288-297.
  • 6Robertson S, Jones K S. Relevance weighting of search terms. Journal of the American Society for Information Science, 1976, 27(3): 129-146.
  • 7Robertson S. On term selection for query expansion. Journal of Documentation, 1990, 46(4): 359-364.
  • 8Harman D. Relevance feedback revisited//Proceedings of the 15th ACM International Conference on Research and Development in Information Retrieval. Copenhagen, Denmark, 1992, 1-10.
  • 9Spark Jones K. Automatic Keyword Classification for Information Retrieval. London, UK: Butterworths, 1971.
  • 10Qiu Y, Frei H P. Concept based query expansion//Proceedings of the 16th ACM International Conference on Research and Development in Information Retrieval. Pittsburgh, PA, 1993:160-169.

共引文献11

同被引文献20

  • 1林大超,安凤平,郭章林,张立宁.滑坡位移的多模态支持向量机模型预测[J].岩土力学,2011,32(S1):451-458. 被引量:31
  • 2Pan S J, Yang Q. A survey on transfer learning [ J]. IEEE Trans- actions on Knowledge and Data Engineering, 2010,22 ( 10 ) : 1345 - 1359.
  • 3Dai W, Yang Q, Xue G, et al. Boosting for uansferleamig[ C]. In Proceedings of the 24th International Conference on Machine Learn- ing, 2007:193-200.
  • 4Zhu X. Semi-supervised learning literature survey [R]. Madison: Department of Computer Sciences, University of Wisconsin,2005.
  • 5Bennett K P,Demifiz A, Maclin R. Exploiting unlabeled data in ensemble methods [ C]. In Proceedings of the 8th Knowledge Dis- cover), and Data Mining, 2002:289-296.
  • 6Shi Y, Lan Z, Liu W, et al. Extending semi-supervised learning methods for inductive transfer learning [ C]. In Proceedings of the 9th International Conference on Data M/ning, 2009:483-492.
  • 7Xie S, Fan W, Peng J, et al. Latent space domain transfer between high dimensional overlapping distributions CC]. In Proceedings of the 18th International Conference on World Wide Web, 2009:91- 100.
  • 8Pan S J, Ni X,-Sun J, et al. Cross-domain sentiment classification via spectral feature alignment [ C ]. In Proceedings of the 19th In- ternational Conference on World Wide Web, 2010:751-760.
  • 9Freund Y, Schapire R E. A decision-theoretic generalization of on- line learning and an application to boosting [J]. Journal of Com- puter and System Sciences, 1997,55 : 119-139.
  • 10Mason L, Baxter J, Bartlett P, et al. Functional gradient tech- niques for combining hypotheses [ A]. In: SchoIkopf B, Smola A, Bartlett P, et 81 ed. Advances in Large Margin Classifiers [ C]. Cambridge: MIT Press, 2000:221-246.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部