期刊文献+

快速三维人耳提取与识别 被引量:5

Fast 3D Ear Extraction and Recognition
下载PDF
导出
摘要 针对现有三维人耳提取与识别算法中存在处理时间长、识别率低的问题,提出一种快速三维人耳提取方法和2种三维人耳识别方法.三维人耳提取时,使用不变特征迭代最近点算法使人耳与平均耳对齐,完成位置和姿态的归一化,然后用掩膜提取出三维人耳.第一种三维人耳识别方法结合人耳深度和曲率信息,采用主元分析算法进行降维,然后用最近邻分类完成识别;第二种三维人耳识别方法则使用不变特征迭代最近点算法对齐测试耳与原型耳,利用配准误差完成人耳识别.实验结果表明,第一种人耳识别方法识别率较高、计算速度很快,第二种人耳识别方法可达到很高的识别率. The main drawbacks of existing 3D ear extraction and recognition algorithms are their long processing time and low recognition rate. In this paper, a novel approach for fast 3D ear extraction and two approaches for 3D ear identification are proposed. For the ear extraction, the ear pose and position are normalized by aligning ear to the mean ear by iterative closest point using invariant features (ICPIF) algorithm. A mask is finally used to extract the 3D ear. In the first 3D ear identification approach, ear is represented by a combination of range image and curvature image. Principle component analysis is then adopted to reduce the dimensionality, followed by the nearest neighbor (NN) algorithm for ear recognition. In the second 3D ear identification approach, the ICPIF algorithm is used to align the probe ear and gallery ear. The registration error is used for ear recognition. Experimental results show that our first ear identification approach has a relatively good recognition rate but a very fast computing speed, and our second approach could achieve a very high recognition rate, but less computationally efficient compared with the first one.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第10期1438-1445,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60672116) 上海市重点学科建设项目(B112)
关键词 人耳提取 三维人耳识别 不变特征迭代最近点 主元分析 ear extraction 3D ear recognition iterative closest point using invariant features (ICPIF) principal component analysis (PCA)
  • 相关文献

参考文献14

  • 1Moreno B, Sanchez A, Velez J F. On the use of outer ear images for personal identification in security applications [C]//Proceedings of the 33rd Annual International Carnahan Conference on Security Technology, Madrid, 1999:469-476.
  • 2Chang K, Bowyer K W, Sarkar S, et al. Comparison and combination of ear and face images in appearance-based biometrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1160-1165.
  • 3Hurley D J, Nixon M S, Carter J N. Force field feature extraction for ear biometrics [J]. Computer Vision and Image Understanding, 2005, 98(3): 491-512.
  • 4刘嘉敏,王玲,兰逸君,李丽娜,杨奇.基于外耳轮廓边缘信息的人耳识别[J].计算机辅助设计与图形学学报,2008,20(3):337-342. 被引量:8
  • 5Besl P J, McKay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 6Yan P, Bowyer K W. Ear biometrics using 2D and 3D images [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005:121.
  • 7Yan P, Bowyer K W. An automatic 3D ear recognition system [C]//Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, 2006: 326-333.
  • 8Yan P, Bowyer K W. Biometric recognition using 3D ear shape [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1297-1308.
  • 9Chen H, Bhanu B. Human ear recognition in 3D [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 718-737.
  • 10Passalis G, Kakadiaris I A, Theoharis T, et al. Towards fast 3D ear recognition for real-life biometric applications[C] //Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, London, 2007: 39-44.

二级参考文献7

共引文献7

同被引文献70

  • 1郭延文,潘永娟,崔秀芬,彭群生.基于调和映射的约束纹理映射方法[J].计算机辅助设计与图形学学报,2005,17(7):1457-1462. 被引量:13
  • 2胡永利,尹宝才,谷春亮,程世铨.基于形变模型的三维人脸重建方法及其改进[J].计算机学报,2005,28(10):1671-1679. 被引量:34
  • 3柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 4田莹,苑玮琦.人耳识别技术研究综述[J].计算机应用研究,2007,24(4):21-25. 被引量:13
  • 5Iannarelli A V. Ear Identification,Forensic Identification serges. Fremont: Paramount Publishing Company, 1989.
  • 6Xu C H, Li S, Tan T N, et al. Automatic 3D face recog- nition from depth and intensity Gabor features. Pattern Recognit, 2009, 42(9): 1895.
  • 7Park U, Tong Y Y, Anil K J. Age-invariant face recognition. IEEE Trans Pattern Anal Mach Intell, 2010, 32(5): 947.
  • 8Yan P, Bowyer K W. Multi-biometrics 2D and 3D ear recognition//Audio- and Video-Based Biometric Person Authentication. New York, 2005:503.
  • 9Zhou J D, Cadavid S, Abdel-Mottaleb M. An efficient 3-D ear recognition system employing local and holistic features. IEEE Trans Inf Forensics Secur, 2012, 7(3): 978.
  • 10Islam S M S, Davies R, Bennamoun M, et al. Efficient detection and recognition of 3D ears. Int J Comput Vision, 2011, 95(1): 52.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部