期刊文献+

一种建立海底格网数字高程模型的插值方法 被引量:10

An Interpolation Method for Constructing Undersea Grid-DEM
下载PDF
导出
摘要 自然邻点插值性能优良,但不适用于约束域,为建立与矢量电子海图对应的海底格网数字高程模型,把协调Delaunay三角剖分的思想融入自然邻点插值,提出协调自然邻点插值算法,简化了构建二阶约束Voronoi单元的过程。采用真实海图进行试验,由矢量海图中的水深要素和海岸线岛屿要素构建海底规则格网数字高程模型。经试验对比,协调自然邻点插值在细节反映能力优于不规则三角网插值,是一种可用于二维约束域插值问题的方法。 The performance of natural neighbor interpolation is good, but it is not suitable for constraint domains. In order to construct the Grid Digital Elevation Modal (Grid-DEM) associated with vector nautical charts, a new interpolation method named as conforming natural neighbor interpolation that combines conforming Delaunay triangulation with natural neighbor interpolation is proposed, which simplifies the procedures of constructing second order Voronoi Cells. Experiment is implemented on a real nautical chart, whose sounding elements and coastline elements are utilized to construct undersea Grid-DEM with the proposed method. The experiment result shows that the proposed method can make more details than Triangulation Irregular Network interpolation, and potentially can be used to solve restricted planar domain interpolation problems.
出处 《中国航海》 CSCD 北大核心 2009年第3期61-65,共5页 Navigation of China
基金 国防预研基金(06J3.8.6)
关键词 水路运输 协调Delaunay三角化 自然邻点插值 矢量电子海图 海底数字高程模型 waterway transportation conforming Delaunay triangulation natural neighbor interpolation vector nautical charts undersea DEM
  • 相关文献

参考文献11

  • 1SIBSON R. A vector identity for the Dirichlet tessellation[C]//Mathematical Proceedigns of the Cambridge Philosophical Scociety 1980, 87(1) : 151-155.
  • 2BRAUN J, SAMBRIDGE M. A numerical method for solving partial differential equations on highly irregular evolving grid[J]. Nature, 1995,376 (6542) : 655-660.
  • 3周小平,周瑞忠.基于Voronoi图的新型几何插值及其与传统代数插值方法的比较[J].岩石力学与工程学报,2005,24(1):133-138. 被引量:15
  • 4YVONNET J, RYCKELYNCK D, LORONG P, CHINESTA F. A new extension of the natural element method non-convex and discontinuous problem: the constrained natural element method (C-NEM) [J]. International Journal for Numerical Methods in Engineering, 2004, 60(8):1451-1474.
  • 5BOWYER A. Computing Dirichlet Tessellations[J]. Computing Journal, 1981,24 (2) : 162-166.
  • 6JOE B, CAO A W. Duality of constrained Voronoi diagrams and Delaunay triangulations[J]. Algorithmica, 1993, 9(2) :142-155.
  • 7SEIDEL R. Constrained Delaunay triangulations and Voronoi diagrams with obstacles [R]. Technical Report 260, Ⅱ G-TU Graz, Austria, 1988.
  • 8KLEIN R, LINGAS A. A linear-time randomized algorithm for the bounded voronoi diagram of a simple polygon[C]//Proeeedings of the ninth annual symposium on Computational geometry San Diego, California, United States, 1993,124-132.
  • 9ORGAN D, FLEMING M, TERRY T, BELYTSCHKO T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency[J]. Computational Mechanics, 1996, 18(3) : 225-235.
  • 10SAPIDIS N, PERUCCHIO R. Delaunay triangulation of arbitrarily shaped planar domains [J]. Computer Aided Geometric Design, 1991, 8(6): 421- 437.

二级参考文献19

  • 1Belytschko T,Lu Y Y,Gu L. Element-Free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37(6):229-256.
  • 2Belytschko T,Krongauz Y,Organ D,et al. Meshless methods:an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(3):3-48.
  • 3Sibson R. A vector identity for the Dirichlet tessellation[J]. Mathematical Proceedigns of the Cambridge Philosophical Scociety,1980,87:151-155.
  • 4Sukumar N,Moran B,Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering,1998,43:839-887.
  • 5Traversoni L. Natural Neighbour Finite Elements[A]. In:Proceedings of International Conference of Hydraulic Engineering Software[C]. Boston:Computational Mechanics Publication,1994. 291-297.
  • 6Sukumar N,Moran B,Semenov A Y,et al. Natural neighbour Galerkin method[J]. International Journal for Numerical Methods in Engineering,2001,50(2):1-27.
  • 7Cueto E,Sukumar N,Calvo B,et al. Overview and recent advances in natural neighbour Galerkin methods[J]. Archives of Computational Methods in Engineering,2002,30(6):6-12.
  • 8Belikov V V,Ivanov V D,Kontorovich V K,et al. The non-Sibsonian interpolation:a new method of interpolation of the values of a function on an arbitrary set of points[J]. Computational Mathematics and Mathematical Physics,1997,37(1):9-15.
  • 9Belytschko T, Lu YY, Gu L. Element-free Galerkin method. Int J Num Meth Eng, 1994, 37:229~256
  • 10Belytschko T, Krongauz Y, Organ D. Meshless methods:An overview and recent developments. Comput Meth Appl Mech Eng, 1996, 139:3~47

共引文献28

同被引文献81

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部