期刊文献+

连续推力最优轨道规避

Continuous-thrust Optimal Orbital Avoidance
下载PDF
导出
摘要 应用非线性规划方法研究了连续推力时间最优和燃料最优航天器规避问题。航天器空间飞行中,为了避免与其他航天器或空间碎片相撞,需采取措施实施规避策略。由于航天器最优规避问题是典型的具路径约束的轨迹优化问题,间接法即应用极大值原理难于处理。考虑航天器推进系统为固定比冲发动机,用改进的轨道根数描述航天器动态,在给定最大推力幅值和中间过渡轨道时,将规避问题划分为转移和返回两个阶段,然后应用非线性规划方法统一考虑时间最优和燃料最优航天器最优规避问题。数值仿真结果表明,最优规避任务能够完成;在时间最优或燃料最优规避情形时,航天器均以最大推力工作,且时间最优规避时消耗燃料最少。 The nonlinear programming method is used to study the continuous-thrust minimum-time and the minimum-fuel- consumption orbital avoidance in this paper. During the spacecraft mission lifetime, a encounter with other space objects is possible and to avoid collision, some maneuver strategy is required. The optimal orbital avoidance is a typical trajectory optimization problem with path constraints, but is difficult to be solved by indirect methods. The dynamics of the spacecraft is described by the modified elements. Given the optimal parking orbit, the orbital avoidance mission is divided into transfer and roundtrip phases. Considering the minimum-time or the minimum-fuel-consumption performance, the optimal orbital avoidance problem can be formulated. Furthermore, the nonlinear programming method is applied to deal with the two phase orbital transfer problem. The simulations demonstrate that the minimum time/fuel-consumption orbital avoidance mission is well accomplished. The simulation results also show that the spacecraft flies around the earth with the maximum thrust magnitude during its whole time history both in the minimum-time and the minimum-fuel-consumption cases.
出处 《科技导报》 CAS CSCD 北大核心 2009年第19期19-23,共5页 Science & Technology Review
基金 国家自然科学基金项目(10832006,60874001) 《科技导报》博士生创新研究资助计划项目(kjdb20090101-5)
关键词 连续推力 时间最优 燃料最优 规避 非线性规划 continuous thrust optimal time minimum fuel- consumption avoidance nonlinear programming
  • 相关文献

参考文献11

  • 1Gao Yang. Advances in low-thrust trajectory optimization and flight mechanics[D]. Lousisiana: University of Missouri-Columbia, 2003.
  • 2Betts J T. Survey of numerical methods for trajectory optimization [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
  • 3Bonnard B, Caillau J-B, Trelat E. Geometric optimal control of elliptic Keplerian[J]. Discrete and Continuous Dynamical System, Series B, 2005, 5(4): 926-956.
  • 4Gergaud J, Haberkorn T. Homotopy method for minimum consumption orbit transfer problem [J]. ESAIM: Control, Optimization and Calculus of Variations, 2006, 12: 294-310.
  • 5Park S Y, Choi K H. Optimal low-thrust intercept/rendezvous trajectories to earth-crossing objects[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 1049-1055.
  • 6Betts J T. Using sparse nonlinear programming to compute low thrust orbit transfer [J]. Journal of the Astronautical Science, 1993, 41: 349- 371.
  • 7Matney M J, Anz-Meador P, Foster J L. Covariance correlations in collision avoidance probability calculations [J]. Advances in Space Research, 2004, 34: 1109-1114.
  • 8US Satellite Destroyed in Space Collision [R/OL]. http://www.space.com/ news/090211-satellite-collision.html. [2009-02-11].
  • 9Srnchez-Ortiz N, Bello-Mora M, Klinkrad H. Collision avoidance maneuvers during spacecraft mission lifetime: Risk reduction and required AV[J]. Advances in Space Research, 2006, 38: 2107-2116.
  • 10Ranieri C L, Ocampo C A. Optimization of roundtrip, time-constrained, finite burn trajectories via an indirect method [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 306-314.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部