摘要
利用Lyapunov函数研究了带有免疫反应的病毒动力学模型的全局稳定性.当基本再生数R0≤1时.病毒在体内清除;当R0>1时,病毒在体内持续生存.并且模型的正解当免疫再生数R1≤1时,趋于无免疫平衡点,当R1>1.趋于地方病平衡点.
The global properties of the virus dymamics model with pathogen-immune response are studied. By means of Lyapunov functions, the global properties of the model are obtained. The virus is cleared if the basic reproductive number R0 ≤ 1, and the virus persists in the host if R0〉 1. Further, positive solutions of the model approach to an immune-free steady state if the immune response reproductive number R1≤ 1 and to an endemic steady state if R1〉 1.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第19期115-119,共5页
Mathematics in Practice and Theory
基金
信阳师范学院校青年骨干教师资助(2008-2011)
关键词
全局稳定性
LYAPUNOV函数
基本再生数
免疫再生数
global properties
lyapunov function
basic reproduction number
immune response reproductive number