期刊文献+

基于进化聚类的图像分割方法 被引量:1

Method for image segmentation based on evolving clustering
下载PDF
导出
摘要 介绍了一个与模糊C均值FCM算法等效的图像颜色分割的方法。首先利用进化聚类对图像中的像素依据其RGB的值进行进化聚类划分,对划分后的各个类的类中心用遗传算法进行优化,然后再对图像中像素进行归类划分,使其满足各类中元素具有较高的相似度,而不同类中的元素相似度差别较大的目标,并与FCM算法进行了实验对比,结果表明经人工评价该算法与模糊C均值FCM算法等效。 A new method that is equivalent to C-means clustering in image color clustering segmentation is introduced. Firstly, pixels ofthe image are segmented based on the value of RGB by evolving clustering. Secondly the center of clustering that had been segmented is optimized by genetic algorithm. Finally, pixels of the image are segmented again, which making pixels of the same cluster high similarity rather than the different cluster. The results of the two methods are equivalent in image color clustering segmentation, which proved by experiment.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第18期4299-4302,共4页 Computer Engineering and Design
基金 地球探测与信息技术教育部重点实验室开放基金项目(2008DTKF012)
关键词 图像分割 进化聚类 遗传算法 基于内容的遥感图像检索 模糊C均值FCM聚类 image segmentation evolving clustering genetic algorithm CBRSIR fuzzy C-means clustering
  • 相关文献

参考文献7

  • 1Gonzalez R C,Woods R E.Digital image processing[M].Beijing:Publishing House of Electronics Industry,2003.
  • 2Bandyopadhyay S,Maulik U.An evolutionary technique based on K-means algorithm for optional clustering in RN[J].Information Sciences,2002,146:221-237.
  • 3Wu Kuo-lung, Yang Min-shen. Alternative C-means clustering algorithms[J].Pattem Recognition,2002,35:2267-2278.
  • 4Kasabov N,Song Q.DENFIS dynamic evolving neural-fuzzy inference system and its application for time-series prediction[J].IEEE Transaction on Fuzzy System,2002,10(2): 144- 154.
  • 5徐中立,李士进,石爱业.数字图像的智能信息处理[M].2版.北京:国防工业出版社,2007.
  • 6Kasabov N.Evolving fuzzy neural networks for supervised/tinsupervised on-line,knowledge-based learning[J].IEEE Transactions of Systems, Man and Cybernetics, Part B-Cybernetics, 2001,31(6):1-6.
  • 7卓茗,孙增圻.一种新型的基于遗传算法的进化模糊推理系统[J].计算机工程,2006,32(3):180-182. 被引量:7

二级参考文献2

  • 1Kasabov N,Song Q.DENFIS:Dynamic Evolving Neural-fuzzy Inference System and Its Application for Time-series Prediction[J].IEEE Transaction on Fuzzy Systems,2002,10(2):144-154.
  • 2Kasabov N. Evolving Fuzzy Neural Networks for Supervised/Unsupervised On-line, Knowledge-based Learning[J]. IEEE Transactions of Systems, Man and Cybernetics, Part B-Cybemetics, 2001,31(6).

共引文献7

同被引文献28

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部