摘要
针对广义模糊熵阈值分割法中参数m的选择问题,提出了一种结合优化算法的自适应参数选取算法。该算法依据一种图像分割质量评价指标建立目标函数,再基于量子粒子群优化搜索算法在参数的变化空间自适应地搜索最佳参数,同时依据模糊熵最大准则对S型隶属度函数中的三个参数(a,b,d)进行了全局组合寻优,从而建立了一个嵌套的优化搜索过程,实现了广义模糊熵图像阈值分割方法的自动阈值选取。实验表明,该方法对光照不均匀图像有更好的分割效果。
An adaptive preferences method is proposed to find the tropy with optimization algorithm. The novel method builds an objecti parameter rn in the generalized fuzzy enve function based on an image segmentation quality evaluation criterion for searching the optimal parameter of the generalized fuzzy entropy and builds the other objective function based on the maximum fuzzy entropy criterion for searching the membership function parameters (a, b, d) in their variation space with the quantum-behavior particle swarm optimization (QPSO) algorithm,respectively. Therefore,it is a nest searching process and realizes the aim of searching the threshold in generalized fuzzy entropy-based image segmentation method automatically. Experiment results show that the new method can obtain good segmentation results on images with illumination noises.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2009年第10期2492-2496,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(60572133)
陕西省教育厅专项科研计划(09JK721)资助课题
关键词
图像分割
广义模糊熵
参数选取
量子粒子群算法
image segmentation
generalized fuzzy entropy
preference
quantum-behavior particle swarm optimization