期刊文献+

基于量子粒子群的广义模糊熵阈值法参数选取

Preferences for generalized fuzzy entropy-based thresholding method based on quantum-behavior particle swarm optimization
下载PDF
导出
摘要 针对广义模糊熵阈值分割法中参数m的选择问题,提出了一种结合优化算法的自适应参数选取算法。该算法依据一种图像分割质量评价指标建立目标函数,再基于量子粒子群优化搜索算法在参数的变化空间自适应地搜索最佳参数,同时依据模糊熵最大准则对S型隶属度函数中的三个参数(a,b,d)进行了全局组合寻优,从而建立了一个嵌套的优化搜索过程,实现了广义模糊熵图像阈值分割方法的自动阈值选取。实验表明,该方法对光照不均匀图像有更好的分割效果。 An adaptive preferences method is proposed to find the tropy with optimization algorithm. The novel method builds an objecti parameter rn in the generalized fuzzy enve function based on an image segmentation quality evaluation criterion for searching the optimal parameter of the generalized fuzzy entropy and builds the other objective function based on the maximum fuzzy entropy criterion for searching the membership function parameters (a, b, d) in their variation space with the quantum-behavior particle swarm optimization (QPSO) algorithm,respectively. Therefore,it is a nest searching process and realizes the aim of searching the threshold in generalized fuzzy entropy-based image segmentation method automatically. Experiment results show that the new method can obtain good segmentation results on images with illumination noises.
作者 雷博 范九伦
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第10期2492-2496,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60572133) 陕西省教育厅专项科研计划(09JK721)资助课题
关键词 图像分割 广义模糊熵 参数选取 量子粒子群算法 image segmentation generalized fuzzy entropy preference quantum-behavior particle swarm optimization
  • 相关文献

参考文献15

  • 1Pal S K, King R A, Hashim A A. Automatic greyleveI thresholding through index of fuzziness and entropy[J]. Pattern Recognition Letter, 1983,1(3) :141 - 146.
  • 2Murthy C A, Pal S K. Histogram thresholding by minimizing graylevel fuzziness[J]. Information Sciences, 1992,60 (1 - 2): 107 - 135.
  • 3Li X Q,Zhao Z W, Cheng H D. Fuzzy entropy threshold approach to cancer detection[J]. Information Sciences, 1995, 4(1) :49 - 56.
  • 4Cheng H D, Chen J R, Li J. Thresholding selection based on fuzzy c-partition entropy approach [J]. Pattern Recognition, 1998,31(7):857 -870.
  • 5Tao W B, Tian J W, Liu J. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm [J]. Pattern Recognition Letters, 2003, 24 ( 16 ):3069 - 3078.
  • 6张坤华,王敬儒,张启衡.复杂背景下扩展目标的分割算法研究[J].红外与毫米波学报,2002,21(3):233-237. 被引量:39
  • 7Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3) :338- 353.
  • 8Fan J L, Zhao F. A generalized fuzzy entropy-based image segmentation method[C]//Proc, of the International Conference on Intelligent Systems and Knowledge Engineering, 2007:427 - 431.
  • 9Zenzo S D, Cinque L, Levialdi S. Image thresholding using fuzzy entropies[J]. IEEE Trans. on Systems, Man and Cybernetics Part B,1998,28(1) :15 - 23.
  • 10范九伦,赵凤.基于Sugeno补的广义模糊熵阈值分割方法[J].电子与信息学报,2008,30(8):1865-1868. 被引量:10

二级参考文献33

  • 1邢延,张天序.复杂背景下基于知识的目标识别算法研究[J].模式识别与人工智能,1995,8(3):237-242. 被引量:5
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 3范九伦.模糊熵理论[M].西安:西北大学出版社,1999..
  • 4Zadeh L A. Probability measures of fuzzy events[J]. J. M. A. A. , 1968,23:421-427.
  • 5De Luca A,Termini S. A definition of a nonprobabilities entropy in the setting of fuzzy set theory[J]. Inform. and Control, 1972,20: 301- 312.
  • 6Loo S G. Measures of fuzziness[J]. Cybernetica, 1977,20 : 201 - 210.
  • 7Trillas E,Riera T. Entropy in finite fuzzy sets[J]. Inf. Sci., 1978,15 : 159- 168.
  • 8Liu X C. Entropy,distance measure and similarity measure of fuzzy sets and their reliation[J].Fuzzy Sets and Systems, 1992,52:305-318.
  • 9Yager R R. On the measure of fuzziness and negation,Part Ⅱ:Lattices[J]. Inform. and Control, 1980,44:236-260.
  • 10Yager R R. Measures of entropy and fuzziness related to aggregation operators [J]. Inf. Sci. , 1995,82:147-166.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部