期刊文献+

有序介孔C-Al_2O_3纳米复合材料的合成及其红外发射率 被引量:2

Syntheses and Infrared Emissivities of Ordered Mesoporous C-Al_2O_3 Nanocomposites
下载PDF
导出
摘要 以嵌段共聚物F127(PEO106PPO70PEO106,MW=12600)为模板剂,异丙醇铝为铝源,低分子量的酚醛树脂为碳源,通过溶胶-凝胶三元共组装法合成了C-Al2O3纳米复合材料.用X射线衍射(XRD)、透射电子显微镜(TEM)及N2吸脱附法对该复合材料进行结构与性能表征,结果显示复合材料MC5A5具有较好的有序介孔结构,其比表面积可达175m2·g-1,孔容0.22cm3·g-1.又以三元乙丙橡胶(EPDM)为粘结剂,与介孔纳米复合材料混合制备涂层.随着复合材料中Al2O3质量分数从30%增加到70%,该涂层的红外发射率从0.575降至0.456,表明Al2O3能有效降低复合材料的红外发射率,预示该复合材料在军事装备隐身需求领域将具有较好的应用前景. C-Al2O3 nanocomposites were synthesized via the sol-gel tri-constituent co-assembly process using an amphiphilic triblock copolymer F127 (PEO106PPO70PEO106, MW=12600) as a template, aluminum iso-propoxide as an inorganic source, and resol as an organic precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption/desorption were used to characterize the structures and properties. The results showed that the nanocomposite MC5A5 has ordered mesoporous structures with a high specific surface area of 175 m^2· g^-1 and a pore volume of 0.22 cm^3·g^-1. Low infrared emissivity coatings were obtained using the ethylene-propylene-diene monomer (EPDM) as an adhesive and the ordered mesoporous C-Al2O3 nanocomposites as a filling. As the mass percentage of Al2O3 was increased from 30% to 70%, the infrared emissivity decreased from 0.575 to 0.456. Al2O3 can effectively reduce the infrared emissivities of nanocomposites. Ordered mesoporous C-Al2O3 nanocomposites are thus promising for application in martial equipment.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第10期2155-2160,共6页 Acta Physico-Chimica Sinica
基金 航空科学基金(2007ZF52061) 国家自然科学基金(50871053)资助项目~~
关键词 有序介孔结构 C-Al2O3纳米复合材料 三元乙丙橡胶 红外发射率 Ordered mesoporou structure C-Al2O3 nanocomposite Ethylene-propylene-diene monomer Infrared emissivity
  • 相关文献

参考文献21

  • 1Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Angew. Chem. Int. Ed., 2004, 43:4303.
  • 2Vinu, A.; Miyahara, M.; Sivamurugan, V.; Mori, T.; Ariga, K. J. Mater. Chem., 2005, 15:5122.
  • 3Roussel, T.; Pellenq, R. J. M.; Bienfait, M.; Vix-Guterl, C.; Gadiou, R.; Beguin, F.; Johnson, M. Langmuir, 2006, 22:4614.
  • 4Feng, X.; Fryxell, G. E.; Wang, L. Q,; Kim, A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276:923.
  • 5Vinu, A.; Hossian, K. Z.; Srinivasu, P. J. Mater. Chem., 2007, 17: 1819.
  • 6Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B, 1999, 103:7743.
  • 7Lu, A, H.; Schmidt, W. Adv. Mater., 2003, 15:1602.
  • 8Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyarna, K. Chem. Commun., 2005:2125.
  • 9Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Angew. Chem. Int. Ed., 2005, 44:7053.
  • 10Wang, J. C.; Xiang, C. S.; Liu, Q.; Pan, Y. B.; Guo, J. K. Adv. Funct. Mater., 2008, 18:2995.

二级参考文献37

共引文献56

同被引文献216

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部