期刊文献+

反相微乳液助水热法可控合成FeNi3合金纳米结构 被引量:4

Controlled Syntheses of FeNi_3 Alloy Nanostructures via Reverse Microemulsion-Directed Hydrothermal Motheds
下载PDF
导出
摘要 利用水热法处理表面活性剂/正辛烷/正己醇/水四元微乳体系成功合成FeNi3合金纳米结构.通过改变表面活性剂的用量和类型来调控产物粒径与形貌.当表面活性剂为聚乙二醇4000(PEG4000)时,产物为球状,粒径约为75nm.当表面活性剂为十六烷基三甲基溴化铵(CTAB)时,产物为海胆状.单个海胆状颗粒是由许多纳米棒构成,其直径约为42nm,长度为0.4-1.2μm.利用X射线粉末衍射(XRD),穆斯堡尔谱,扫描电子显微镜(SEM),透射电子显微镜(TEM),选区电子衍射(SAED),多功能磁天平(MMVFTB)等测试手段对产物的组成、形貌和磁性能进行了表征.球状和海胆状的FeNi3样品在室温下呈现典型的铁磁性特征,其饱和磁化强度(Ms)值分别为114.4和97.4emu·g-1,矫顽力(Hc)值分别为94.0和329.0Oe. FeNia alloy nanostmctures were synthesized by bydrothermal methods in the -hexanol/ water quaternary reverse microemulsion systems. The size and shape of the products could be controlled by changing the type and dosage of the surfactant. Spherical particles with a diameter of ca 75 nm were prepared when polyethylene glycol 4000 (PEG4000) was used as the surfactant. Sea-urchin-like particle was obtained when cetyltrimethylammonium bromide (CTAB) was used as the surfactant. The single sea-urchin-like particles were composed of many nanorods with diameters of ca 42 nm and lengths of 0.4-1.2 μm. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Moessbaner spectroscopy, scanning electronic microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and multi-purpose magnetic variable field translation balance (MM VFrB). Both the spherical and sea-urchin-like FeNi3 samples exhibited typical ferromagnetic behavior at room temperature. Their saturation magnetization values (Ms) were 114.4 and 97.4 emu· g^-1, respectively, while their coercivity values (He) were 94.0 and 329.0 0e, respectively.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第10期2167-2172,共6页 Acta Physico-Chimica Sinica
基金 上海市科委纳米专项基金(0852nm03200) 华东师范大学优秀博士基金(20080045)资助项目~~
关键词 纳米颗粒 FeNi3合金 反相微乳液 水热法 形貌控制 Nanoparticles FeNi3 alloy Reverse microemulsion Hydrothermal method Morphology control
  • 相关文献

参考文献28

  • 1Chikazumi, S.; Taketomi, S.; Ukita, M.; Mizukami, M.; Miyajima, H.; Setogawa, M.; Kurihara, Y. J. Magn. Magn. Mater., 1987, 65: 245.
  • 2Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bnnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Angew. Chem. Int. Ed., 2004, 43:4303.
  • 3Gupta, A. K.; Gupta, M. Biomaterials, 2005, 26:3995.
  • 4Hyeon, T. Chem. Commun., 2003:927.
  • 5Mornet, S.; Vasseur, S.; Grasset, F.; Verveka, P.; Goglio, G.; Demourgues, A.; Pottier, J,; Pollert, E.; Duguet, E. Prog. Solid State Chem. Commun., 2006, 34:237.
  • 6Tanaka, M.; Itoh, K.; Iwamoto, H.; Yamaguchi, A.; Miyajima, H.; Yamaoka, T. J. Magn. Magn. Mater,, 2007, 310:e792.
  • 7Moustafa, S. F.; Daoush, W. M. J. Mater. Process. Technol., 2007, 181:59.
  • 8Datta, A.; Pal, M.; Chakravorty, D.; Das, D.; Chintalapudi, S. N. J. Magn. Magn. Mater., 1999, 205:301.
  • 9Liu, Y.; Zhang, J.; Yu, L.; Jia, G.; Jing, C.; Cao, S. J. Magn. Magn. Mater., 2005, 285:138.
  • 10Sparchez, Z.; Chicinas, I.; Isnard, O.; Pop, V.; Popa, F. J. Alloy. Compd., 2007,434:485.

二级参考文献4

  • 1陈秉彝,电镀与环保,1989年,9卷,1页
  • 2陆怀先,南京大学学报,1988年,24卷,4期,676页
  • 3近角聪信,磁性体手册.中,1984年
  • 4麦振洪,赵永男.微乳液技术制备纳米材料[J].物理,2001,30(2):106-110. 被引量:29

共引文献21

同被引文献134

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部