期刊文献+

从三角范畴的recollement到Abel范畴的recollement 被引量:1

原文传递
导出
摘要 研究了三角范畴的recollement与Abel范畴的recollement的关系.证明了:若三角范畴D允许关于三角范畴D和D的recollement,则Abel范畴D/T允许关于Abel范畴D/i*(T)和D/j*(T)的recollement,其中T为D的cluster-倾斜子范畴,且满足i*i*(T)*T,j*j*(T)*T.
出处 《中国科学(A辑)》 CSCD 北大核心 2009年第10期1180-1186,共7页 Science in China(Series A)
基金 国家自然科学基金(批准号:10671161) 教育部博士点基金(批准号:20060384002) 华侨大学科研启动基金(批准号:08BS506)资助项目
  • 相关文献

参考文献13

  • 1Beilinson A, Bernstein J, Deligne P. Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers. Asterisque, 100. Paris: Soc Math France, 1982, 5-17.
  • 2Cline E, Parshall B, Scott L. Algebraic stratification in representation in representation categories. J Algebra, 117:504-521 (1988).
  • 3Cline E, Parshall B, Scott L. Finite dimensional algebras and highest weight categories. J Reine Angew Math, 391:85-99 (1988).
  • 4MacPherson R, Vilonen K. Elementary construction of perverse sheaves. Invent Math, 84:403-436 (1986).
  • 5Happel D. Triangulated categories in the representation theory of finite dimensional algebras. In: London Math Soc Lecture Notes Ser. 119. Cambridge: Cambridge University Press, 1988.
  • 6Koenig S, Zhu B. From triangulated categories to abelian categories: cluster tilting in a general framework. Math Z, 258(1): 143 160 (2008).
  • 7Chen Q, Tang L. Recollements, idempotent completions and t-structures of triangulated categories. J Algebra, 319:3053-3061 (2008).
  • 8陈清华,林亚南.扩张代数的recollement[J].中国科学(A辑),2003,33(4):354-360. 被引量:3
  • 9林增强,林亚南.单点扩张代数与recollement[J].中国科学(A辑),2008,38(3):241-248. 被引量:1
  • 10Franjou V, Pirashvili T. Comparison of abelian categories recollement. Doc Math, 9:41-56 (2004).

二级参考文献19

  • 1杜先能.代数的导出等价[J].中国科学(A辑),1996,26(11):1002-1008. 被引量:2
  • 2Grothendieck A. Groups and classes des categories abeliennes et trianguliers complexe parfaits. In: Lecture Notes in Mathemathics, Vol 589, New York: Springer-Verlag, 1977, 351-371
  • 3Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers. Asterisque, 100:1-172 (1982)
  • 4Parshall B, Scott L. Derived categories, quasi-hereditary algebras and algebraic groups. Carlton University Mathematical Notes, 3:1-104 (1988)
  • 5Beligiannis A, Reiten I. Homological and homotopical aspects of torsion theories. In: Mem Amer Math Soc, Vol 883, Providence, RI: Amer Math Soc, 2007
  • 6Franjou V, Pirashvili T. Comparison of abelian categories recollement. Doc Math, 9:41-56 (2004)
  • 7MacPherson R, Vilonen K. Elementary construction of perverse sheaves. Invent Math, 84:403-436 (1986)
  • 8Ringel C M. Tame algebras and integral quadratic forms. In: Lecture Notes in Mathematics, Vol 1099, Berlin-Heidelberg-New York: Springer, 1984
  • 9Hilton P J, Stammbach U. A Course in Homological Algebra. 2nd ed. New York: Springer-Verlag, 2003
  • 10Rickard J. Morita theory for derived categories. J London Math Soc, 1989, 39(2): 436-456.

共引文献2

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部