期刊文献+

空分装置三吸附器TSA纯化系统及其节能效果分析 被引量:10

Tri-adsorber TSA Purification System and Its Energy Saving Effect in Air Separation Unit
下载PDF
导出
摘要 为了回收现有的双吸附器空气净化系统余热,提出了采用三吸附器空气净化系统回收利用余热,并分析了可行性.以两工业企业20000和21000Nm3/h制氧机为例进行初步分析计算,结果表明,若把现有系统改造为三吸附器纯化系统,可节约氮气加热电耗分别达51.3%和42.7%.基于Aranovich-Donohue吸附等温线方程和线性驱动力传质假设的非绝热吸附模型,模型参数通过匹配生产现场监控数据确定,开发了空分变温吸附纯化系统模拟器.基于此模拟器的数值模拟,对宝钢分公司6号制氧机双吸附器TSA系统进行三吸附器系统改造的安全性和节能效果进行了预测,安全达标情况下,节能率为45%. In order to reuse waste heat of present bi-adsorber purification system, a new tri-adsorber system was proposed to reuse the residual energy of the discharged purge gas. Energy efficiency and economic feasibility of this new system were analyzed. By general analysis and computation, the prospective rates of energy-saving could reach 58.6% and 46.1% respectively if this tri-adsorber system was applied in 20 000 and 21000 Nm^3/h air separation units (ASU) from two factories. An air purification temperature swing adsorption (TSA) simulator for ASUs based on Aranovich-Donohue adsorption isotherm and linear driving force (LDF) mass transfer assumed non-adiabatic adsorption model was developed, the model parameters were determined by matching monitoring curves obtained from locale industry. Safety and energy-saving effect were proved through numerical simulation if tri-adsorber TSA system was applied in No.6 ASU of Baosteel Co., Ltd., the rate of energy-saving was 45%.
出处 《过程工程学报》 CAS CSCD 北大核心 2009年第5期932-939,共8页 The Chinese Journal of Process Engineering
关键词 空气分离 变温吸附 三吸附器纯化器 余热回收 air separation temperature swing adsorption tri-adsorber purification exhausted heat reuse
  • 相关文献

参考文献15

  • 1Tatsushi U, Tooru N, Morimitsu N. Development of Air-purification TSA Simulator for Cryogenic Air Separation Unit [J]. Nippon Sanso Engineering Report, 2003, (22): 13-18.
  • 2Ahn H W, Lee C H. Adsorption Dynamics of Water in Layered Bed for Air-drying TSA Process [J]. AIChE J., 2003, 49(6): 1601-1609.
  • 3Kim J H, Lee C H, Kim W S. Adsorption Equilibria of Water Vapor on Alumina, Zeolite 13X, and a Zeolite X/Activated Carbon Composite [J]. J. Chem. Eng. Data, 2003, 48(1): 137-141.
  • 4Ahn H W, Lee C H. Effects of Capillary Condensation on Adsorption and Thermal Desorption Dynamics of Water in Zeolite 13X and Layered Beds [J]. Chem. Eng. Sci., 2004, 59(13): 2727-2743.
  • 5Yang R T. Gas Separation by Adsorption Process [M]. Boston: Butterworth's, 1987. 51,178.
  • 6Ruthven D M. Principle of Adsorption and Adsorption Process [M]. New York: Wiley, 1984. 320.
  • 7Harwell J H, Liapis A I, Litchfield R. A Non-equilibrium Model for Fixed-bed Multi-component Adiabatic Adsorption [J]. Chem. Eng. Sci., 1980, 35(11): 2287-2296.
  • 8Carter J W, Husain H. The Simultaneous Adsorption of Carbon Dioxide and Water Vapor by Fixed Beds of Molecular Sieves [J]. Chem. Eng. Sci., 1974, 29(1): 267-273.
  • 9Pan C Y, Basmadjian D. An Analysis of Adiabatic Sorption of Single Solutes in Fixed Beds: Equilibrium Theory [J]. Chem. Eng. Sci., 1971, 26(1): 45-57.
  • 10Ko D, Kim M, Moon I. Analysis of Purge Gas Temperature in Cyclic TSAProcess [J]. Chem. Eng. Sci., 2002, 57(1): 179-195.

同被引文献102

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部