期刊文献+

基于条件随机模拟的DEM误差分析——以董志塬水土流失等级划分为例 被引量:2

DEM Error Analysis Based on Conditional Stochastic Simulation
下载PDF
导出
摘要 DEM是对地球表面的模拟和模型化表达,DEM不可避免的含有误差,且DEM误差具有空间可变性和相关性。常用的DEM误差估算模型为中误差(RMSE),但RMSE为全局变量,无法反映误差的空间性。为了克服RMSE的缺陷,本文采用条件随机模拟实现了DEM误差曲面模拟。通过董志塬水土流失等级划分表明,DEM误差在平坦区域严重影响坡度精度,且坡度最大误差变程大于高程最大误差变程,DEM误差被放大;使用概率模型和模糊度模型分析表明,大部分网格点水土流失等级划分均受到DEM误差影响;条件随机模型的使用可以让DEM用户更加准确的分析和评价DEM误差对最终决策的影响。 A digital elevation model(DEM) is a representation of terrain elevation as a function of geographic location.DEM inevitably contains errors,which are spatial variable and correlated.The usual error model is Root Mean Square Error(RMSE),whereas it is a global variable,and can not show the DEM error of each grid.In order to overcome the deficiency of RMSE,Dongzhi Tableland was employed as a test region,and an error surface about 6.25km2 was constructed based on the conditional stochastic simulation model(CSS).Water and soil loss level determination was taken as an example to validate the importance of CSS.The results indicated that the uncertainties in derived slope of the Dongzhi Tableland tend to be found in flatter areas;the slope error range is bigger than DEM error range,which indicates that the DEM error is magnified;probabilistic and fuzzy model shows that almost all grids are influenced by the DEM error in water and soil loss level determination.As a tool for DEM error analysis,conditional stochastic model can improve the user assessment of DEM error.
出处 《地球信息科学》 CSCD 北大核心 2009年第5期572-576,共5页 Geo-information Science
基金 国家杰出青年科学基金(40825003) 国家高新技术发展计划(2006AA12Z219) 中国科学院知识创新工程重要方向项目(kzcx2-yw-429) 国家科技支撑计划课题(2006BAC08B04)
关键词 DEM 误差 条件随机模拟 坡度 DEM error conditional stochastic simulation slope
  • 相关文献

参考文献17

  • 1Hunter G J and Goodchild M F. Modeling the Uncertainty of Slope and Aspect Estimates Derived from Spatial Databases. Geographical Analysis, 1997,29 ( 1 ) : 35 - 49.
  • 2Huang Y D. Evaluation of Information Loss in Digital Elevation Models with Digital Photogrammetric Systems. Photogrammetric Record ,2000,16 (95) :781 - 791.
  • 3Fisher P F. Improved Modeling of Elevation Error with Geostatistics. Geolnformatiea, 1998,2 ( 3 ) :215 - 233.
  • 4Holmes K W, et al. Error in a USGS30 - meter Digital Elevation Model and Its Impact on Terrain Modeling. Journal of Hydrology ,2000,233 : 154 - 173.
  • 5Couclelis H. The Certainty of Uncertainty: GIS and the Limits of Geographic Knowledge. Transactions in GIS, 2003,7 (2) :165 - 175.
  • 6陈传法,岳天祥.基于HASM算法的DEM建模与应用试验[J].地球信息科学,2009,11(3):319-324. 被引量:4
  • 7Carlisle B H. Modelling the Spatial Distribution of DEM Error. Transactions in GIS, 2005,9 (4) : 521 - 540.
  • 8Wechsler S P and Kroll C N. Quantifying DEM Uncertainty and Its Effect on Topographic Parameters. Photogrammetric Engineering & Remote Sensing,2006,72(9) :1081 -1091.
  • 9Davis T J and Keller C P. Modelling and Visualizing Multipie Spatial Uncertainties. Computers & Geosciences, 1997, 23(4) :397 -408.
  • 10Ehlschlaeger C R. The Stochastic Simulation Approach: Tools for Representing Spatial Application Uncertainty. University of California, 1998.

二级参考文献20

  • 1岳天祥,杜正平.高精度曲面建模:新一代GIS与CAD的核心模块[J].自然科学进展,2005,15(4):423-432. 被引量:29
  • 2岳天祥,杜正平.高精度曲面建模与经典模型的误差比较分析[J].自然科学进展,2006,16(8):986-991. 被引量:30
  • 3Gauss K F. General Investigation of Curved Surfaces. New York : Raven Press, 1965.
  • 4Yue Tian-xiang, Du Zheng-ping. A New Method of Surface Modelling and Its Application to DEM Construction. Geomorphology, 2007, 91: 161- 172.
  • 5Yue Tian-xiang, Du Zheng-ping. Spatial Models and Geo- graphical Information Systems. Ecological Models, 2008, 3315 - 3325.
  • 6Berger M J. Local Adaptive Mesh Refinement for Shock Hydrodynamics. Journal of Computational Physics, 1989, 82: 64-84.
  • 7Jessee J P, et al. An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation. Journal of Computational Physics, 1998, 139 : 380 - 398.
  • 8Han B, et al. Adaptive Multi-Grid Method for Numerical Solutions of Elastic Wave Equation. Applied Mathematics and Computation, 2002, 133:609-614.
  • 9Settgast V, et al. Adaptive Tessellation of Subdivision Surfaces. Computers & Graphics, 2004, 28( 1 ): 73- 78.
  • 10Baker T J. Mesh Adaptation Strategies for Problems in Fluid Dynamics, Finite Elements in Analysis and Design, 1997, 25: 243-273.

共引文献3

同被引文献37

  • 1王金鑫,秦子龙,赵光成,李炳玄,高超然.基于球体网格与DEM的流域地形特征尺度效应分析——以长江流域为例[J].应用基础与工程科学学报,2022,30(5):1109-1120. 被引量:1
  • 2刘学军,龚健雅,周启鸣,汤国安.基于DEM坡度坡向算法精度的分析研究[J].测绘学报,2004,33(3):258-263. 被引量:157
  • 3朱红春,汤国安,张友顺,易红伟,李明.基于DEM提取黄土丘陵区沟沿线[J].水土保持通报,2003,23(5):43-45. 被引量:39
  • 4胡鹏,杨传勇,吴艳兰,等.新数字高程模型[M].北京:测绘出版社,2007.
  • 5Lane S N, Westaway R M, Hicks D M. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing[J]. Earth Surface Processes and Landforms, 2003, 28(3):249-271.
  • 6Wheaton J M, Brasington J, Williams R D. Modelling fluvial sediment budgets under uncertainty[J]. EOS Trans, 2004, 85(47): Fall Meeting Supplement, Abstract H53C-1264.
  • 7Brasington J, Rumsby B T, Mcvey R A. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey[J]. Earth Surface Processes and Landforms, 2000, 25(9): 973-990.
  • 8Brasington J, Langham J, Rumsby B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport[J]. Geomorphology, 2003, 53(3/4): 299-316.
  • 9Hunter G J, Goodchild M F. Modeling the uncertainty of slope and aspect estimates derived from spatial databases[J]. Geographical Analysis, 1997, 29(1): 35-49.
  • 10Kidner D B. Higher-order interpolation of regular grid digital elevation models[J]. International Journal of Remote Sensing, 2003, 14(24): 2981--2987.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部