期刊文献+

椭圆参考轨道指定区域最优交会研究

Optimal Rendezvous for Elliptical Reference Orbits in Specified Regions
下载PDF
导出
摘要 研究了椭圆参考轨道指定区域最优交会问题。为了实现在指定区域完成最优交会,采用以参考轨道真近点角为自变量的线性化时变Tschauner-Hempel交会动力学模型,按照设定的真近点角交会域和最优二次性能指标设计最优交会控制,加权矩阵随真近点角变化。为方便指定区域最优控制问题求解,采用区段混合能法递推求解时变黎卡提矩阵微分方程和状态轨线。对远距、近距异面交会和共面交会三种情况设定不同的交会域进行了仿真研究,结果表明方法能保证在设定的真近点角域内完成交会,交会控制能耗小,精度高。 Coplanar and non - coplanar optimal rendezvous problems for elliptical reference orbits in specified regions were studied. To implement optimal rendezvous in a specified region, the linear time - varying Tschauner - Hempel model was used to describe the relative dynamics in rendezvous. Then the rendezvous region was set accord- ing to true anomaly and the control strategies were designed on a quadratic performance index with the weighted ma- trix as the functions of true anomaly. To make the optimal controls easily, an interval mixed - energy method was used to solve the time - varying Riccati differential equations. The non - eoplanar and coplanar rendezvous with long distance and short distance in given true anomaly regions were simulated and compared. The results indicated that the rendezvous can be completed in the specified region with less fuel expenditure and high precision.
机构地区 西北工业大学
出处 《计算机仿真》 CSCD 北大核心 2009年第10期60-64,共5页 Computer Simulation
关键词 最优控制 椭圆参考轨道 交会 区段混合能 Optimal control Elliptical reference orbits Rendezvous Interval mixed energy
  • 相关文献

参考文献10

  • 1R Sharma, P Sengupta and S R Vadali. Near - Optimal Feedback Rendezvous in Elliptic Orbits Accounting for Nonlinear Differential Gravity[ J]. Journal of Guidance, Control and Dynamics,2007,30 (6) : 1803 - 1803.
  • 2J L Goodman, J P Brazzel and D A Chart. Challenges of Orion Rendezvous Development [ J ]. AIAA 2007 - 6682, 2007.
  • 3D C Woftlnden and D K Geller. Navigating the Road to Autonomous Orbital Rendezvous[ J]. Journal of Spacecraft and Rockets, 2007, 44(4) : 898 -909.
  • 4P Singla, K Subbarao and J L Junkins. Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty [ J ]. Journal of Guidance, Control and Dynamics, 2006, 29(4) : 892 -902.
  • 5C D Karlgaard. Robust Rendezvous Navigation in Elliptical Orbit [ J]. Journal of Guidance, Control and Dynamics, 2006, 29(2) : 495 - 499.
  • 6P Sengupta. Dynamics and Control of Satellite Relative Motion in a Central Gravitational Field E D 1- India: Indian Institute of Technology, 2006.
  • 7Jinjun Shan and Hong - Tao Liu. Dynamics and Fuzzy Control for Formation Flying with Elliptical Reference Orbits[ J]. AIKA 2004 - 5025, 2004.
  • 8G Inalhan, M Tillerson and J P How. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits [ J ]. Journal of Guidance, Control and Dynamics, 2002, 25( 1 ) :49 -50.
  • 9谭述君,钟万勰.线性时变系统二次最优控制问题的保辛近似求解[J].应用数学和力学,2007,28(3):253-262. 被引量:2
  • 10A Rahmani, M Mesbahi, F Y Hadaegh. On the optimal balanced -energy formation flying maneuvers [ J ]. AIAA 2005 - 5836, 2005.

二级参考文献11

  • 1钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183. 被引量:30
  • 2徐宁寿 郑兵.方块脉冲函数用于线性时变系统的分析和最优控制[J].自动化学报,1982,8(1):55-67.
  • 3Anderson Brian D O,Moore John B.Optimal Control:Quadratic Methods[M].Englewood Cliffs,N J:Prentice Hall,1990.
  • 4Chen C T.Linear System Theory and Design[M].New York:CBS College,1984.
  • 5Chen W L,Shih Y P.Analysis and optimal control of time-varying linear systems via Walsh functions[J].Int J Control,1978,27(6):917-932.
  • 6Hsiao C H,Wang W J.Optimal control of linear time-varying systems via Haar wavelets[J].Journal of Optimization Theory and Applications,1999,103(4):641-655.
  • 7ZHONG Wan-xie.Duality System in Applied Mechanics and Optimal Control[M].New York:Kluwer Academic Publishers,2004.
  • 8Choi Chiu H.Time-varying Riccati differential equation for numerical experiments[A].Proceedings of the 29th Conference on Decision and Control[C].Honolulu,Hawaii:Dec.1990,930-940.
  • 9LU Ping.Closed-form control laws for linear time-varying systems[J].IEEE Transaction on Automatic Control,2000,45(3):537-542.
  • 10钟万勰.线性二次最优控制的精细积分法[J].自动化学报,2001,27(2):166-173. 被引量:16

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部