期刊文献+

生物智能算法在机器人路径规划中的应用研究 被引量:1

Application of Organic Intelligent Algorithm in Robotic Path Planning
下载PDF
导出
摘要 提出并研究了一种应用于机器人路径规划的改进型生物智能算法。针对机器人路径规划的实际应用,在用Dijkstra算法链接图建模的地图中得到一个最优解的可行空间,又用优化蚁群算法得到全局的最优路径,具有较强的鲁棒性。在微粒群算法的基础上提出了矢量编码方案,有效避免了对地图建模过程的依赖,优化设计了交叉算子和变异算子,使得算法在保持较高收敛速度的同时能够避免陷入局部最优点。计算机仿真结果表明了算法的有效性。 This work mainly deals with the application of improved organic intelligent algorithm in robotic path planning. For the application of path planning, Dijkstra algorithm is firstly adopted to get a best -solution space, then the improved ant colony optimization is analyzed and contrasted in detail, which has strong robustness. By introducing crossover and mutation operator and proposing a novel encoding method to the basic PSO algorithm, noticeable improvement in algorithm performance is achieved. The results of computer simulation demonstrates the superiority and the effectiveness of the enhanced algorithm.
出处 《计算机仿真》 CSCD 北大核心 2009年第10期182-185,206,共5页 Computer Simulation
关键词 生物智能算法 路径规划 蚁群算法 微粒群算法 交叉算子 变异算子 Organic intelligent algorithm Robotic planning ACO PSO Crossover operator Mutation operator
  • 相关文献

参考文献4

二级参考文献49

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166.
  • 9Barraquand J,Langlois B,Latombe J C.Numerical potential field techniques for robot path planning [J].IEEE Trans on Systems,Man and Cybernetics,1992,22(2):224-241.
  • 10Kondo K.Motion planning with six degrees of freedom by multi-strategic bi-directional heuristic free-space enumeration [J].IEEE Trans on Robotics and Automation,1991,7(3):267-277.

共引文献457

同被引文献11

  • 1BREMERMANN H J. Chemotaxis and optimization[J].Journal of the Franklin Institute, 1974,297(5) .397-404.
  • 2MULLER S D,AIRAGHI J,MARCHETTO S, et al. Optimization based on bacterial chemotaxi[J].IEEE Transaction of Evolutionary Computation, 2002,6 ( 1 ) : 16-29.
  • 3PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control System Maga- zine, 2002,22 : 52-67.
  • 4PASSINO K M. Bacterial foraging optimization[J]. International Journal of Swarm Intelligence Research, 2010,1 (1) .1-16.
  • 5TSUJI T,SUZUKI M,TAKIGUCHI N,et al. Biomimetic control based on a model of chemotaxis in escherichia coli[J]. Ar- tificial Life, 2010,16(2) : 155-177.
  • 6LIU W,CHEN H X,CHEN H N,et al. The core mechanism of adaptive bacterial foraging optimization[C]//3rd Interna- tional Conference on Computational Intelligence and Industrial Application (PACIIA2010). Wuhan,Dec. 4-5,2010 .92-95.
  • 7NIU B, FAN Y,ZHAO P, et al. A novel bacterial foraging optimizer with linear decreasing ehemotaxis step[C]//2nd Inter- national Workshop on Intelligent Systems and Applications (ISA2010). Wuhan, May 22-23,2010 : 1-4.
  • 8VEELAERT P, BOGAERTS W. Ultrasonic potential field sensor for obstacle avoidance[J].IEEE Transactions on Robo- tics and Automation, 1999,15(4) :774-779. -.
  • 9GUZMAN M A,DELGADO A, CARVALHO J D. A novel multiobjective optimization algorithm based on bacterial chemo- taxis[J]. Engineering Applications of Artificial Intelligence,2010,23.292-301.
  • 10周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21. 被引量:73

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部