摘要
提出并研究了一种应用于机器人路径规划的改进型生物智能算法。针对机器人路径规划的实际应用,在用Dijkstra算法链接图建模的地图中得到一个最优解的可行空间,又用优化蚁群算法得到全局的最优路径,具有较强的鲁棒性。在微粒群算法的基础上提出了矢量编码方案,有效避免了对地图建模过程的依赖,优化设计了交叉算子和变异算子,使得算法在保持较高收敛速度的同时能够避免陷入局部最优点。计算机仿真结果表明了算法的有效性。
This work mainly deals with the application of improved organic intelligent algorithm in robotic path planning. For the application of path planning, Dijkstra algorithm is firstly adopted to get a best -solution space, then the improved ant colony optimization is analyzed and contrasted in detail, which has strong robustness. By introducing crossover and mutation operator and proposing a novel encoding method to the basic PSO algorithm, noticeable improvement in algorithm performance is achieved. The results of computer simulation demonstrates the superiority and the effectiveness of the enhanced algorithm.
出处
《计算机仿真》
CSCD
北大核心
2009年第10期182-185,206,共5页
Computer Simulation