期刊文献+

胎儿生长受限仔鼠脂肪组织中葡萄糖转运蛋白4的表达和细胞转位变化 被引量:1

Glucose transporter 4 expression and translocation in adipose tissue of male rats born with fetal growth restriction
原文传递
导出
摘要 目的探讨胎儿生长受限(FGR)仔鼠脂肪组织中葡萄糖转运蛋白4(GLUT4)的表达和转位变化及其与胰岛素抵抗的关系。方法采用妊娠期全程低蛋白饮食法建立大鼠FGR模型,并设立对照组。观察雄性仔鼠生后体重增长和胰岛素抵抗指数(IRI)变化,采用荧光定量逆转录聚合酶链反应技术检测脂肪组织中GLUT4mRNA表达,Western印迹法检测基础状态下脂肪组织中GLUT4的蛋白表达,以及胰岛素刺激后GLUT4向细胞膜的转位变化。结果(1)FGR组仔鼠平均出生体重明显低于对照组(t=6.399,P〈0.01),8周龄时体重超过对照组,且空腹IRI增高(P均〈0.05)。(2)基础状态下,FGR组脂肪组织中GLUT4的mRNA表达(0.36±0.04)明显低于对照组(1.01±0.11)(t=2.854,P〈0.05),GLUT4总蛋白含量(913.47±87.32)也低于对照组(1248.30±131.52)(t=2.617,P〈0.05)。胰岛素刺激后,对照组细胞膜中GLUT4蛋白浓度显著升高(897.03±102.87),是基础状态(423.05±41.26)的2.12倍(t=4.759,P〈0.01),而FGR组对外源性胰岛素反应迟钝,细胞膜中GLUT4蛋白含量(525.12±54.96)仅是基础状态(379.57±38.71)的1.38倍(t=2.083,P〈0.05)。结论宫内蛋白质营养不良导致子代脂肪组织GLUT4蛋白表达降低和胰岛素介导的转位受阻,可能与葡萄糖摄取和利用障碍,促进糖尿病发生有关。 Objective To investigate the effects of fetal growth restriction (FGR) on the expressions and translocation of glucose transporter 4 (GLUT4) in adipose tissue of male offsprings and its relationship with insulin resistance in FGR. Methods Male 8-week-old offspring from maternal with protein- malnutrition or normal diet were studied. The weight of rats at 8 weeks of age were obtained and insulin resistance index (IRI) was examined at 4 weeks and 8 weeks of age. Perinephric fat pads were harvested to measure the expression of GLUT4 mRNA by fluorescent quantitative RT-PCR and the GLUT4 protein level and insulin-stimulated translocation were assessed by Western blot. Results Birth weight of FGR animals were significantly lower than that of control (t= 6. 399, P〈0.01), but surpassed the control at 8 weeks with increased fasting IRI(P〈0. 05). The GLUT4 mRNA expression in adipose tissue of FGR rats (0. 36±0. 04) was lower than that of control (1.01±0. 11) (t=2. 854, P〈0. 05). Declined total GLUT4 protein concentration(913.47±87.32) was also noted in the FGR group compared with the controls (1248. 30±131.52) (t = 2. 617, P 〈 0. 05) . After administration of insulin, plasma membrane associated-GLUT4 concentration significantly increased to 897. 03±102. 87, which was equal to 2. 12 times of the basal level (423.05±41.26) in control rats(t=4. 759, P〈0. 01). However, insulin-responsive GLUT4 translocation was markedly blunted in FGR rats(525.12±54.96) compared with controls, only increased to 1.38 times of the basal level (379.57±38. 71)(t=2. 083, P〈0. 05). Conclusions Decreased GLUT4 expression and insulin-stimulated translocation in adipose tissue of the male FGR offspring might be caused by exposure to protein malnutrition during pregnancy, which may disturb the uptake and utilization of glucose and subsequently be related to diabetes mellitus in later life.
出处 《中华围产医学杂志》 CAS 2009年第5期363-366,共4页 Chinese Journal of Perinatal Medicine
关键词 胎儿生长迟缓 脂肪组织 胰岛素 抗药性 葡萄糖转运体4型 大鼠 Fetal growth retardation Adipose tissue Insulin resistance Glucose transportertype 4 Rats
  • 相关文献

参考文献15

  • 1Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol, 2004,28 : 81-87.
  • 2Zarieh SW. Metabolic syndrome, diabetes and cardiovascular events: current controversies and recommendations. Minerva Cardioangiol, 2006,54:195-214.
  • 3Desai M, Gayle D, Babu J, et al. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol, 2005,288 : R91-R96.
  • 4Mattews DR, Hosker JP, Rudenskia AS, et al.Homeostasis mode assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985,28:412-419.
  • 5Gavete ML, Martin MA, Alvarez C, et al. Maternal food restriction enhances insulin-induced GLUT-4 translocation and insulin signaling pathway in skeletal muscle from suckling rats. Endocrinology, 2005, 146:3368-3378.
  • 6Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25: 402-408.
  • 7Thamotharan M, McKnight RA, Thamotharan S, et al. Aberrant insulin-induced GLUT4 translocation predicts glucose intolerance in the offspring of a diabetic mother. Am J Physiol Endocrinol Metab, 2003,284 : E901-E914.
  • 8Barker DJ. The developmental origins of adult disease. J Am Coll Nutr, 2004, 23 : s588-s595.
  • 9Sugden MC, Holness MJ. Gender-specific programming of insulin secretion and action. J Endocrinol,2002,175 : 757-767.
  • 10Fernandez-Twinn DS,Wayman A, Ekizoglou S, et al. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am J Physiol Regul Integr Comp Physiol, 2005, 288: R368-R373.

二级参考文献8

  • 1丘小汕,黄婷婷,沈振宇,邓会英,柯志勇,梅开勇,赖峰.早期不同饮食营养干预对宫内生长迟缓幼鼠生长追赶的影响[J].中华儿科杂志,2004,42(10):782-786. 被引量:10
  • 2宋薇薇,尚涛,刘洪波,张世妹.孕鼠营养异常对子鼠成年后激素抵抗影响的实验研究[J].中华妇产科杂志,2007,42(1):39-42. 被引量:8
  • 3Langley-Evans SC. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int J Food Sci Nutr,2000,51:11-17.
  • 4Smith GC, Crossley JA, Aitken DA, et al. First-trimester placentation and the risk of antepartum stillbirth. JAMA, 2004, 292 : 2249-2254.
  • 5Manzato E,Romanato G, Zambon S. The future of the metabolic syndrome: certainties, open questions and discussions. Minerva Med, 2006,97:5-12.
  • 6Air EL, Benoit SC, Clegg DJ, et al. Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinology,2002,143:2449-2452.
  • 7Fernandez-Twinn DS, Ozanne SE. The maternal endocrine environment in the low-protein model of intra-uterine growth restriction. Br J Nutr, 2003 ,90:815-822.
  • 8Bertin E, Gangnerau MN, Bellon G, et al. Development of betacell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. Am J Physiol Regul Integr Comp Physiol, 2002 , 283 : R623-R630.

共引文献7

同被引文献24

  • 1Finken M], Keijzer- Veen MG, Dekker FW, et al. Preterm birth and later insulin resistance: effects of birth weight and postnatal growth in a population based longitudinal study from birth into adult life. Diabetologia , 2006, 49:478-485.
  • 2Rotteveel], van Weissenbruch MM, Twisk]W, et al. Insulin sensitivity in prematurely born adults: relation to preterm growth restraint. Horm Res Paediatr , 2011, 75: 252-257.
  • 3Feng XT, Wang TZ, Leng], et al. Palmitate contributes to insulin resistance through downregulation of the Src-mediated phosphorylation of Akt in C2C12 myotubes. Biosci Biotechnol Biochern , 2012, 76: 1356-136l.
  • 4Wei Z, Peterson]M, Lei X, et al. C1q/TNF-related protein- 12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes.] Bioi Chern, 2012, 287:10301-10315.
  • 5Hashikawa-Hobara Ns Hashikawa Nv Inoue Yv er al. Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin?resistant rats. Diabetes, 2012, 61: 925-932.
  • 6Shen XX, Li HL, Pan L, et al. Glucotoxicity and a cell dysfunction: involvement of the PI3K/ Akt pathway in glucose-induced insulin resistance in rat islets and clonal aTCl-6 cells. Endocr Res, 2012, 37: 12-24.
  • 7Zhu S, Sun F, Li W, et al. Apelin stimulates glucose uptake through the PI3K/ Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochern , 2011, 353: 305-313.
  • 8Zeng XQ, Zhang CM, Tong ML, et al. Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/ AKT insulin pathway.J Bioenerg Biornembr , 2012, 44: 351-355.
  • 9Gallagher E], Fierz Y, Vijayakumar A, et al. Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene, 2012, 31: 3213-3222.
  • 10Brutman-Barazani T, Horovitz-Frred M, Aga-Mizrachi S, et al. Protein kinase a but not PKCa is involved in insulin?induced glucose metabolism in hepatocytes.J Cell Biochem, 2012,113: 2064-2076.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部