期刊文献+

Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究 被引量:12

First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO
原文传递
导出
摘要 采用基于密度泛函理论(DFT)框架下的第一性原理平面波超软赝势方法,在同等环境条件下,建立了不同大小的ZnO模型,在ZnO中对不同浓度的氮和铝原子进行了高掺杂,并对低温条件下高掺杂氮和铝原子的ZnO半导体进行了态密度计算,然后分别对进入价带的相对空穴数和空穴散射迁移率进行了计算,最后对电导率进行了类比,发现适量低浓度的高掺杂氮和铝原子会使ZnO半导体的导电性能增强.即在低温高掺杂氮和铝原子的条件下,ZnO半导体的电导率不仅与掺杂氮和铝原子浓度有关,而且和进入价带的相对空穴数有关.和空穴散射的迁移率有关的结果,与实验结果对比分析,计算和实验结果相一致. Under the same condition,ZnO models with different sizes are proposed by using the plane wave ultra-soft pseudopotential technique based on the density functional theory(DFT).Al and N with different concentrations are heavily doped in ZnO semiconductor,and the density of states of Al and N doped ZnO is calculated by DFT mothod under the condition of low temperature.The relative average number of holes and the scattering mobility of holes in the valence band are calculated.We find that heavily doping of A1-2N atoms with low concentration can enhance the conducting of ZnO, which means that the conductivity of ZnO semiconductor is related with not only the concentration of heavy doped A1 and N, but also the relative average number of holes and the scattering mobility of holes in the valence band. The calculated results agree with the experimental results.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第10期7136-7140,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10862002)资助的课题~~
关键词 ZnO半导体 浓度 电导率 第一性原理 ZnO semiconductor concentration conductivity first principles
  • 相关文献

参考文献19

  • 1Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230.
  • 2Ryu Y R,Kim W J,White H W 2000 J. Cryst. Grouth 19 419.
  • 3Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257.
  • 4Oh H J,Jeong Y,Suh S J 2003 J. Phys. Chem. Solid 64 2219.
  • 5Takahashi H, Fujimoto K, Konno H 1984 J. Electrochem Soc. 131 1856.
  • 6Wilhelmsen W, Hurlen T 1987 J. Electrocim Act. 32 85.
  • 7Shikanai M, Sakairi M,Takahashi H 1997 J. Electrochem Soc. 144 2756.
  • 8Kobayashi A, Sankey O F, Dow J D 1983 Phys. Rev. B 28 946.
  • 9Yamamoto T, Katayama Yoshida H 2000 J. Cryst. Growth 552 214.
  • 10Zeuner A,Alves H, Sann J, Kriegseis W, Neumann C, Hofmann D M, Meyer B K, Hoffmann A, Haboeck U, Stra~3burg M, Kaschner A 2004 Phys. Status Solidi. C 1 731.

二级参考文献14

  • 1张富春,邓周虎,阎军锋,王雪文,张志勇.Ga掺杂ZnO电子结构的密度泛函计算[J].功能材料,2005,36(8):1268-1272. 被引量:11
  • 2熊稳,赵铧.ZnO薄膜的激子能量和束缚能的计算[J].物理学报,2007,56(2):1061-1065. 被引量:9
  • 3Vaithianathan V,Lee B T,Kim S S.2005 J.Appl.Phys.98 043519
  • 4Xiu F X,Yang Z,Mandalapu L J,Zhao D T,Liu J L.2005 Appl.Phys.Lett.87 252102
  • 5Kang S H,Hwang D K,Park S J.2005 Appl.Phys.Lett.86 211902
  • 6Lu J G,Ye Z Z,Zhuge F,Zeng Y J,Zhao B H,Zhu L P.2004 Appl.Phys.Lett.85 3134
  • 7Wang Z J,Song L J,Li S C,Lu Y M,Tian Y X,Liu J Y,Wang L Y.2006 Chin.Phys.15 2710
  • 8Yamamoto T,Katayama-Yoshida H.1999 Jpn.J.Appl.Phys.38 L166
  • 9Ozgür U,Alivov Ya I,Liu C,Teke A,Reshchikov M A,Dogan S,Avrutin V,Cho S J,Morko? H.2005 J.Appl.Phys.98 041301
  • 10Kresse G,Hafner J.1993 Phys.Rev.B 47 558

共引文献28

同被引文献54

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部