期刊文献+

高亏格膜泡形状的数值计算 被引量:1

Numerical Calculation of Vesicle Shapes with High Topological Genus
下载PDF
导出
摘要 通过对Willmore区域外,特别是中等及较小约化体积下的形状及其演化进行深入细致的研究,发现在这一区域的形状要远比原有的猜测丰富,亏格g=2的膜泡会展现出比已有结果更多迷人的形状并出现新的膜泡相变分支.同时,数值计算的结果更加期待实验验证,从而为曲率模型的正确性提供有力支持. With numerical calculation on shapes of genus 2 vesicle with small reduced volume,interesting shapes and new phase transition branches are found.More supports for the curvature model are expected with experimental observations.
作者 解立强
出处 《计算物理》 EI CSCD 北大核心 2009年第5期763-766,共4页 Chinese Journal of Computational Physics
关键词 高亏格膜泡形状 曲率模型 对称性 相变 vesicle shapes of high topological genus curvature model symmetry phase transition
  • 相关文献

参考文献14

  • 1Michalet X, Bensimon D. Observation of stable shapes and conformal diffusion in genus 2vVesicles[J]. Science, 1995,269:666- 668.
  • 2Michalet X, Bensimon D, Fourcade B. Fluctuating vesicles of nonspherical topology[J]. Phys Rev Lett, 1994,72 : 168 - 171.
  • 3Canham P B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell [ J ]. J Theor Biol, 1970, 26(1): 61- 81.
  • 4Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments [J]. Z Naturforsch C, 1973, 28(11): 693- 703.
  • 5Ouyang Z C, Helfrich W. Instability and deformation of a spherical vesicle by pressure[J]. Phys Rev Lett, 1987, 59:2486 - 2488.
  • 6Zhang S G, Ouyang Z C. Periodic cylindrical surface solution for fluid bilayer membranes[ J]. Phys Rev E, 1996, 53:4206 - 4208.
  • 7Naito H, Okuda M, Ouyang Z C. Counterexample to some shape equations for axisymmetric vesicles[J]. Phys Rev E, 1993, 48: 2304 - 2307.
  • 8Ouyang Z C. Anchor ring-vesicle membranes[J]. Phys Rev A, 1990, 41: 4517- 4520.
  • 9Naito H, Okuda M, Ouyang Z C. New solutions to the helfrich variation problem for the shapes of lipid bilayer vesicles: beyond delaunay' s surfaces[J] . Phys Rev Lett, 1995, 74:4345 - 4348.
  • 10周晓华,张劭光.球形拓扑中复杂形状生物膜泡的获得及其稳定性分析[J].物理学报,2006,55(10):5568-5574. 被引量:6

二级参考文献40

  • 1周晓华,张劭光.球形拓扑中复杂形状生物膜泡的获得及其稳定性分析[J].物理学报,2006,55(10):5568-5574. 被引量:6
  • 2Hotani H 1984 J.Mol.Biol.178 114
  • 3Miao L,Seifert U,Wortis M,Dobereiner H G 1994 Phys.Rev.E 49 5389
  • 4Svetina S,Zeks B 1989 Eur.Biophys.J.17 101
  • 5http://www.susqu.edu/facstaff/b/brakke/
  • 6Yan J,Liu Q H,Liu J X,Ou-Yang Z C 1998 Phys.Rev.E 58 4730
  • 7Zhou J J,Zhang Y,Zhou X,Ou-Yang Z C 2001 In.J.Mod.Phys.B 15 2977
  • 8Zhang Y,Zhou X,Zhou J J,Ou-Yang Z C 2002 In.J.Mod.Phys.B 16 511
  • 9Du Q,Liu C,Wang X Q 2006 J.Comput Phys.212 757
  • 10Surface Evolver的说明文档http://www.susqu.edu/facstaff/b/brakke/

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部