期刊文献+

Spin因子上的Jordan三元映射

Jordan Triple Maps on Spin Factors
下载PDF
导出
摘要 设R是实数域,H是维数≥2的实的Hilbert空间并且A=H+R.1为对应于的Spin因子.如果从A到它自身的双射Ф满足:(1)任给a,b,c∈A,都有Ф({abc})={Ф(a)Ф(b)Ф(c)};(2)Ф|R.1是可加的,则H上存在唯一的酉元U,使得任给x∈H,α∈R,都有Ф(x+α.1)=Ux+α.1或Ф(x+α.1)=-Ux-α.1. Let R be the field of real numbers, H be a real Hilbert space of dimension at least 2 and A=H+R·1 be the spin factor corresponding to H. The existence and uniqueness of a unitary operator U on H are proved, such that Ф(x+α·1)=Ux+α·1 or Ф(x+α·1)=Ux-α·1 for every x∈H,α∈R,, if a bijective map Ф from A to itself satisfies Ф({abc})={Ф(a)Ф(b)Ф(c)}; for all a, b, c ∈ A, and Ф|R·1 is additive.
出处 《青岛大学学报(自然科学版)》 CAS 2009年第3期15-17,共3页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(10675086) 山东自然科学基金(Y2006A03)
关键词 Spin因子 Jordan三元映射 可加性 Spin factor Jordan triple maps Additivity.
  • 相关文献

参考文献8

  • 1Harald Hanche-Olsen, Erling Stormer. Jordan Operator Algebras[M]. Pitman Advanced Publishing Program, Boston 1984.
  • 2Lu F. Jordan triple maps[J]. Linear Algebra Appl, 2003, 375:311 -317.
  • 3Molnar L. Multiplicative Jordan triple isomorphisms on the self adjoint elements of von Neumann algebras[J]. Linear Algebra Appl, 2006, 419:596-600.
  • 4Ji P, Liu Zhongyan. Addtivity of Jordan maps of standard Jordan operator algebras[J]. Linear Algebra Appl, 2009, 430:335 - 343.
  • 5Lu F. Jordan maps on associative algebras[J]. Commun Algebra, 2003, 31: 2273 -2286.
  • 6Lu F. Additivity of Jordan maps on standard operator algebras[J]. Linear Algebra Appl, 2002, 357:123 - 131.
  • 7Lu F. Multiplicative mappings of operator algebras[J]. Linear Algebra Appl, 2002, 347:283 -291.
  • 8Martindale W.S. Ⅲ. When are multiplicative mappings additive[J]. Proc Amer Math Soc, 1969, 21:695 -698.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部