期刊文献+

一类线性差分方程的动力学 被引量:1

Dynamics of a class of linear difference equations
下载PDF
导出
摘要 本文给出了一类线性差分方程的充分条件,应用该条件解决了此线性差分方程解的收敛性、有界性等问题. The sufficient condition for a class of linear difference equation is obtained here.The condition is applied to solve the problem of the convergence and boundedness nature of the solutions for the linear difference equation.
出处 《广西工学院学报》 CAS 2009年第3期50-52,共3页 Journal of Guangxi University of Technology
基金 广西工学院硕士科研启动基金(院科研070232)资助
关键词 线性差分方程 收敛 有界性 linear difference equation convergence boundedness
  • 相关文献

参考文献8

  • 1Stevo Stevic'. Boundedness character of a class of difference equations[J]. Nonlinear Analysis, 2009 (70) :839-848.
  • 2M. R. S. Kulenovic, G. Ladas. Dynamics of second order rational difference equations with open problems and conjectures[M]. Chapman & Hall/CRC Press, 2001.
  • 3Wang Tong Li, Hong Rui Sun. Dynamics of a rational difference equation[J]. Appt. Math. Comput, 2005 (163):577-591.
  • 4E. A. Grove, G. Ladas, M. Predescu, et al. On the global character of the difference equation xn+1 = (α+γxn-(2k+1)+δxn-2l)/(A+xn-2l) [J]. Joural of Difference Equations and Applications, 2003,9 (2) : 171 - 199.
  • 5E. Chattel-joe, E. A. Grove, Y. Kostrov,et al. On the Trichotomy Character of Xn+1= (α+γxn-1)/(A+ Bxn+xn-2)[J]. Joural of Difference Equations and Applications, 2003, 9(12):1113-1128.
  • 6Qi Wang, Fanping Zeng, Gengrong Zhang, et al. On the global character of the difference equation xn+1 = (α+ B1axn-1 + B3xn-3 + … + B2k+1xn-2k-1) /( A + B2xn-2 + B4xn-4 + … + B2kxn-2k) [J]. Joural of Difference Equations and Applications, 2006,12 (5) : 399-417.
  • 7R. Devault, C. Kent, W. Kosmala. On the recurisive sequence xn+1 = p+xn-m/xn [J]. Joural of Difference Equations and Applications, 2003,9 (80) : 721-730.
  • 8G. Papaschinoponlos,B. K. Papadopoulos. On teh fuzzy difference equation xn+1 = A + xn/xn-m [ J ]. Fuzzy Sets and Systems, 2002 (129) :73-81.

同被引文献8

  • 1Mehdi Dehghan. Reza Mazrooei-Sebdani, Some results about the global attractivity of bounded solutions of difference equations with applications to periodic solutions[J]. Chaos, Solitons and Fractals, 2007, 32: 1398-1412.
  • 2Chatterjee E. Grove E.A. Y. Kostrov,et al. On the Trichotomy Character of x[J]. J. Diff. Equ. Appl., 2003, 9 ' ' A +Bxn+x2 (12): 1113-1128.
  • 3Mehdi Dehghan. Reza Mazrooei-Sebdani,Dynamics of [J]. Applied Mathematics and Computation, 2007, 185: 464-472.
  • 4Grove E.A. , Ladas G. , Predescu M. ,et al. On the Global character of the Difference Equation xn[J]. J. Diff. A +x_ Equ. Appl., 2003, 9(2): 171-199.
  • 5Palladino F. J.. Difl'erence inequalities, comparison tests, and some consequences[JJ. Involve J. Math., 2008, 1 : 91-100.
  • 6Wang Changyou, Wang Shu, Wang Wei. Global asymptotic stability of equilibrium point for a family of rational difference equations? [J. Applied Mathematics Letters, 201 l, 24(5): 714-718.
  • 7Sun Taixiang, Xi Hongjian, He Qiuli. On boundedness of the difference equation with period-k coefficients [J]. Xn--s+l Applied Mathematics and Computation, 2011,217(12,15) : 5994-5997.
  • 8I Abdullah Selquk Kurbanl, Cengiz inar, Ibrahim Yalinkaya. On the behavior of positive solutions of the system of rational differenceequations [J]. Mathematical and Computer Modeling, 2011, 53(5-6) : 1261-1267.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部