期刊文献+

气固反应的终止判断与酸性气体干式净化能限分析 被引量:4

A NEW TERMINATION CRITERION FOR GAS-SOLID REACTIONS AND ITS APPLICATION TO ACIDIC GASES DRY REMOVAL CAMCITY AND UTILIZATION ANALYSIS
下载PDF
导出
摘要 借助成核—晶体生长模型,对气固反应过程中固体产物层的形成进行能耗分析,提出最小稳定晶核尺寸与成长后的晶粒相等的终止判据,与原来普遍使用的阅值孔隙率终止判据相补充,全面考虑气固反应的终止原因.在数值模拟中利用这些终止判据,预测垃圾焚烧炉排烟中HCI气体与钙吸收剂之间的干式反应程度,分析烟气干式净化的使用条件. With the help of nucleation and crystallization model and energy analysis, a new ter-mination criterion was proposed for gas-solid reactions with solid product formation. Whenthe size of minimum stable nucleus in the reaction process reaches that of the developedcrystal, the reactions cease. This new termination criterion and the generally used perco-lation threshold porosity criterion replenish each other under differellt conditions, and theformer is suitable for acidic gases dry absorption capacity prediction in practice. By numeri-cal predictions using these criteria conditions under which dry removal can be applied to areanalyzed.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 1998年第6期762-766,共5页 Journal of Engineering Thermophysics
关键词 干式净化 终止判据 成核-晶体生长 烟气净化 dry removal of acidic gases, termination criterion, nucleation and crystallization
  • 相关文献

参考文献3

  • 1陈德珍,博士学位论文,1997年
  • 2张济忠,分形,1995年
  • 3Duo W,Chem Eng Sci,1994年,49卷,24A期,4429页

同被引文献25

  • 1陈德珍,张鹤声.垃圾焚烧尾气中HCl干式净化过程的数学模拟[J].同济大学学报(自然科学版),1996,24(3):281-286. 被引量:2
  • 2华东化工学院分析化学教研组,分析化学,1989年
  • 3Romeo L M, Abanades J C, Escosa J M, et al. Oxyfuel Carbonation/Calcination Cycle for Low Cost CO2 Capture in Existing Power Plants [J]. Energy Conversion and Management, 2008, 49(10): 2809-2814.
  • 4Aihara M, Nagai T, Matsushita J, et al. Development of Porous Solid Reactant for Thermal-energy Storage and Temperature Upgrade Using Carbonation/Decarbonation Reaction [J]. Applied Energy, 2001 69(3): 225-238.
  • 5Irfan A, Giilsen D. Calcination Kinetics of High Purity Limestones [J]. Chem. Eng. J., 2001, 83(2): 131-137.
  • 6Mostafavi E, Sedghkerdar M H, Mahinpey N. Thermodynamic and Kinetic Study of CO2 Capture with Calcium Based Sorbents: Experiments and Modeling [J]. Ind. Eng. Chem. Res., 2013, 52(13): 4725-4733.
  • 7Cui Z X, Xue Y Q, Xiao L B, et al. Effect of Particle Size on Activation Energy for Thermal Decomposition of Nano-CaCO3 [J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(3): 569-572.
  • 8Takkinen S, Saastamoinen J, Hyppiinen T. Heat and Mass Transfer in Calcination of Limestone Particles [J]. AIChE J., 2012, 58(8): 2563-2572.
  • 9Soares B D, Hori C E, Batista C E A, et al. Thermal Decomposition and Solid Characterization of Calcium Oxide in Limestone Calcination [J]. Mater. Sci. Forum, 2008, 591/593: 352-357.
  • 10Wang Y, Lin S Y, Suzuki Y. Limestone Calcination with CO2 Capture (11): Decomposition in CO2/Steam and CO2/N2 Atmospheres [J]. Energy Fuels, 2008, 22(4): 2326-2331.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部