期刊文献+

一个有限区间的Hilbert型积分不等式

A Hilbert-type Integral Inequality on the Finite Interval
下载PDF
导出
摘要 以Hilbert不等式为特例的Hilbert型不等式是分析学的重要不等式.近代,由于改进了权系数方法及应用了参量化思想,使该类不等式的研究得到深入发展.该文引入多参数,应用实分析的方法以估算权函数,在有限区间(a,b)(0<a<b<∞)建立若干类Hilbert型积分不等式及其等价式.作为应用,还考虑了一些特殊核的情形. Hilbert-type inequalities including Hilbert's inequality are important in analysis and its applications. In recent years, by improving the way Of weight coefficient and introducing the independent parameters, some researches on the extensions and applications of this type of inequalities are further developed. In this paper, by introducing some parameters and using the way of analysis, the weight functions are estimated, and a few classes of Hilbert-type integral inequality and the equivalent form on the finite interval (a,b)(1〈a〈b〈∞) are given. As applications, a lot of cases of the particular kernel are considered.
作者 杨必成
出处 《广东教育学院学报》 2009年第5期1-7,共7页 Journal of Guangdong Education Institute
基金 广东高校自然科学基金重点资助项目(05Z026) 广东省自然科学基金资助项目(7004344)
关键词 HILBERT型积分不等式 权函数 等价式 Hilbert-type integral inequality weight function kernel equivalent form
  • 相关文献

参考文献6

二级参考文献42

  • 1高明哲.Hardy-Riesz拓广了的Hilbert不等式的一个改进[J].Journal of Mathematical Research and Exposition,1994,14(2):255-259. 被引量:22
  • 2杨必成,高明哲.关于Hardy-Hilbert不等式中的一个最佳常数[J].数学进展,1997,26(2):159-164. 被引量:57
  • 3王竹溪 郭敦仁.特殊函数论[M].北京:科学出版社,1979..
  • 4Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Cambridge Univ. Press,Cambridge, 1952.
  • 5Mitrinovic, D. S., Pecaric, J. E. and Fink, A. M., Inequalities Involving Functions and Their Integral and Derivatives, Kluwer Academic Publishers, Boston, 1991.
  • 6Yang Bicheng, On Hilbert's integral inequality, J. Math. Anal. Appl., 200(1998), 778-785.
  • 7Kuang Jichang, On new extensions of Hilbert's integral inequality, J. Math. Anal. Appl.,235(1999), 608-614.
  • 8Yang Bicheng, On a generalization of Hardy-Hilbert's integral inequality with a best value, Chinese Ann. of Math., A21(4)(2000), 401-408.
  • 9Yang Bicheng, On Hardy-Hilbert's integral inequality, J. Math. Anal. Appl., 261(2001),295-306.
  • 10Yang Bicheng, On new generalizations of Hilbert's inequality, J. Math. Anal. Appl.,248(2000), 29-40.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部