期刊文献+

靶向软骨的非病毒纳米基因载体体内外转染特性的研究 被引量:2

In vivo and in vitro cartilage transfection by a non-viral gene delivery system
原文传递
导出
摘要 目的采用一种靶向软骨的非病毒纳米基因传递系统,携带增强型绿色荧光蛋白(EGFP)在体内外对软骨细胞进行转染,探讨一种临床可用的促进软骨修复的方法。方法将高相对分子质量壳聚糖(HMWC)适度降解,成为低相对分子质量壳聚糖(LMWC),并与EGFP的质粒复合形成稳定的非病毒纳米基因传递系统。经过体外的转染实验后,这些纳米复合物被进一步注射到伴有全层软骨缺损的新西兰大白兔动物模型膝关节中,探讨其在体内传递治疗基因促进软骨修复的可能性。结果结果显示LMWC/DNA纳米复合物可以有效地转染体外单层培养的软骨细胞和软骨组织片。在体内应用时,LMWC/EGFP基因纳米复合物可以安全有效地转染软骨细胞,并表现出一定的靶向性。结论本研究显示了由LMWC/DNA纳米复合物介导的体内转染方法促进软骨修复的可行性,其有望成为一种简单、安全、有效、可控并且可早期使用的促进软骨修复的方法。 Objective To develop a clinically applicable approach to enhancing natural repair mechanisms by in vivo transfeetion using a non-viral gene delivery system targeting at chondroeytes. Methods High molecular weight chitosan (HMWC) was degraded to produce low molecular weight chitosan (LMWC) and combined with enhanced green fluorescent protein (EGFP) plasmid to form stable complexes of nano-size. After being tested in vitro, these nano-complexes were employed to animal models with full-thick cartilage defect to demonstrate the feasibility of delivering the report gene in vivo by intra-articular injections. Results The results showed that LMWC/DNA nano-complexes could deliver the gene into cultured chondrocytes and cartilage tissue efficiently both in vitro and in vivo. Conclusion LMWC/DNA nano-complexes can have a potential to be a safe and effective method of enhancing osteochondral defect repair in orthopaedics and sport medicine.
出处 《中华创伤骨科杂志》 CAS CSCD 2009年第10期951-955,共5页 Chinese Journal of Orthopaedic Trauma
基金 基金项目:江苏省自然科学基金(BK2005085) 军队“十一五”计划项目(06G043)
关键词 基因转移 损伤修复 纳米材料 报告基因 Gene delivery Regeneration Nano-material Report gene
  • 相关文献

参考文献12

  • 1赵建宁,王瑞,郭亭,高淑英,张峻峰.新型纳米基因转移系统体外转染兔关节软骨细胞的研究[J].中华创伤骨科杂志,2007,9(10):959-963. 被引量:4
  • 2Sanbrook J,Russell D W.Molecularcloning:alaborarymanual(分子克隆操作指南).余茂,译.3版.北京:科学出版社,1995.
  • 3Moskowitz RW. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage, 2006, 14: 1-2.
  • 4van den Berg WB, van der Kraan PM, Scharstuhl A, et al. Growth factors and cartilage repair. Clin Orthop Relat Res, 2001, (391Suppl) : S244-250.
  • 5van Beuningen HM, Glansbeek HL, van der Kraan PM, et al. Osteoarthriti-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage, 2000, 8: 25-33.
  • 6Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther, 2002, 9: 1647-1652.
  • 7Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm, 1999, 178: 231-243.
  • 8Huang M, Fong CW, Khor E, et al. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release, 2005, 106: 391-406.
  • 9Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 2005, 26: 611-619.
  • 10Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res, 2000, 51: 586-595.

二级参考文献11

  • 1Muzzarelli RA, Biagini G, Debenedittis A, et al. Carbohydrate polymer. London: PO1 Press, 2001: 35-41.
  • 2Guo T, Zhao JN, Di Z, et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials, 2006, 7: 1095-1103.
  • 3Gao SY, Chen JN, Xu XR, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting.lnt J Pharm, 2003, 225: 57-68.
  • 4Gummow BD, Roberts GA. Studies on chitosan-induced metachromasy. Metachromatic behavior of sodium 2'-hydroxy- 1, 1'-azonaphthalene-4-sulfonate in the presence of chitosan. Makromol Chem, 1985, 186: 1239-1244.
  • 5Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, 1989.
  • 6Mumper RJ, Wang J, Klakamp SL, et al. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J Control Release, 1998, 52: 191-203.
  • 7Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm, 1999, 178: 231-243.
  • 8Leong KW, Mao HQ, Truong Le VL, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release, 1998, 53: 183-193.
  • 9Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev, 2001, 52: 145-150.
  • 10Mumper RJ, Wang J, Claspell JM, et al. Novel polymeric condensing carriers for gene delivery. Proc Intern Symp Contol Rel Bioact Mater, 1995, 22: 178-181.

共引文献3

同被引文献14

  • 1XIANG Ying,ZHENG Qiang,JIA Bing-bing,HUANG Guo-ping,Xu Yu-lin,WANG Jin-fu,PAN Zhi-jun.Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2007,8(2):136-146. 被引量:13
  • 2Zheng F, Shi XW, Yang GF, et al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci, 2007, 80: 388-396.
  • 3Lavertu M, Methot S, Tran-Khanb N, et al. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials, 2006, 27: 4815-4824.
  • 4Zhao X, Yu SB, Wu FL, et al. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release, 2006, 112: 223-228.
  • 5Guo T, Zhao J, Chang J, et al. Porous chitosan-gelatin scaffold containingplasmid DNA encoding transforming growth factor-betal for chondrocytes proliferation. Biomaterials, 2006, 27: 1095-1103.
  • 6Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev, 2010, 62: 12-27.
  • 7Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm, 2004, 57: 1-8.
  • 8Gao Y, Xu Z, Chen S, et al. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. Int J Pharm, 2008, 359: 241-246.
  • 9Koping-Hoggard M, Melnikova YS, Varum KM, et al. Relationship between the physical shape and the efficiency of oligomerie chitosan as a gene delivery system in vitro and in vivo. J Gene Med, 2003, 5: 130-141.
  • 10Liu W, Sun S, Cao Z, et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials, 2005, 26: 2705-2711.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部