期刊文献+

中碳钢在海水中阴极保护紫铜的二维有限元法计算研究 被引量:4

2-DIMENSIONAL FINITE ELEMENT METHOD FOR CATHODIC PROTECTION OF COPPER BY MEDIUM CARBON STEEL IN SEAWATER
下载PDF
导出
摘要 对于中碳钢在海水中作为牺牲阳极阴极保护紫铜而建立了6个二维物理模型。对Laplace方程进行了弱形式推导以便于有限元法计算。用有限元法模拟计算了各物理模型阴极保护体系的电位分布,并进行实验验证。结果表明,二维有限元法能很好地模拟该阴极保护体系的电位分布。在小范围内中碳钢和紫铜电偶对的距离远近对电位分布影响不大。各模型中具有代表性的X轴、Y轴方向的电位模拟计算值与实测值接近。中碳钢阴极保护紫铜具有可行性,有限元法计算能够为其阴极保护设计提供依据。 Six different 2-D physical models for cathodic protection of copper by medium carbon steel as sacrificial anode in seawater are built in this paper. Weak form of Laplace equation was deduced to make finite element method (FEM) numerical calculation convenient. Then, potential distribution of various physical models was computed by FEM, and followed by experimental measurements for validation. The results show clearly that potential distribution of the cathodic protection system could be well simulated by the 2-D FEM solution. The distance of the galvanic couples is not a key factor influencing potential distribution in small range. Typical simulation data (along X-axis and Y-axis) of different models are consistent with the experimentally measured results. Therefore, it should be feasible to cathodically protect copper with medium carbon steel as sacrificial anode, and FEM could afford well a basis for cathodic protection design.
出处 《中国腐蚀与防护学报》 CAS CSCD 北大核心 2009年第5期382-387,共6页 Journal of Chinese Society For Corrosion and Protection
基金 国家自然科学基金项目(40776044) 中国科学院知识创新工程重要方向项目(KZCX2-YW-210)资助
关键词 阴极保护 有限元 中碳钢 紫铜 cathodic protection, finite element method (FEM), medium carbon steel, copper
  • 相关文献

参考文献26

  • 1Brichau F, Deconinck J. A numerical model for cathodic protection of buried pipes [J]. Corrosion, 1994, 50(1): 39- 49.
  • 2Rabiot D, Dalard F, Rameau J J, et al. Study of sacrificial anode cathodic protection of buried tanks: numerical modeling [J]. J. Appl. Electrochem., 1999, 29:541-550.
  • 3Harriman K, Gavaghan D J, Houston P, et al. Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode [J]. Electrochem. Commun., 2000, 2: 567-575.
  • 4Khaleel M A, Lin Z, Singh P, et al. A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC [J]. J. Power Sources, 2004, 130:136-148.
  • 5Low C T J, Roberts E P L, Walsh F C. Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell [J]. Electrochem. Acta, 2007, 52:3831-3840.
  • 6Munn R S, Devereux O F. lution of galvanic corrosion Numerical modeling and sosystems. 1. governing dif- ferential equation and electrodic boundary conditions [J] Corrosion, 1991, 47(8): 612-618.
  • 7Munn R S, Devereux O F. Numerical modeling and solution of galvanic corrosion systems. 2. finite-element formulation and descriptive examples [J]. Corrosion, 1991, 47(8): 618-634.
  • 8邱枫,徐乃欣.钢质贮罐底板外侧阴极保护时的电位分布[J].中国腐蚀与防护学报,1996,16(1):29-36. 被引量:40
  • 9吴中元,梁旭巍,孟宪级,白丽萍.区域性阴极保护电位分布算法的改进[J].天津纺织工学院学报,1997,16(4):61-64. 被引量:16
  • 10Lim C S, Lee H I, Shin S B, et al. Evaluation of technical feasibility on applying calcareous deposit coatings to ship ballast tanks [J]. Corros. Rev., 2000, 18(2-3): 181-193.

二级参考文献128

共引文献152

同被引文献82

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部