期刊文献+

基于代替数据法的心率变异信号混沌特性的识别 被引量:1

Chaotic Identification of HRV Based on Surrogate Data Method
原文传递
导出
摘要 采用代替数据法对心率变异(Heart rate variability,HRV)信号的混沌特性进行识别。首先介绍了利用一步预测误差平均绝对值(MAE)为统计量的基于代替数据法的混沌识别原理,用一个已知的混沌系统响应和一个有色噪声信号证实该算法的有效性,然后对几组典型生理和病理状态的HRV进行分析,计算并比较了几个特征参数的数值变化情况。 The chaos of heart rate variance(HRV) is identified by surrogate data method in this paper. Firstly, the main principle of chaotic identification is introduced, in which the median absolute error (MAE) of one-step prediction for HRV is set as the statistic. The algorithm is checked with a known chaotic system response and a colored noise signal. Then, some typical healthy and unhealthy HRVs are analyzed with the method of surrogate data, and some characteristic parameters from this method are compared.
作者 刘东民
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第5期989-991,1004,共4页 Journal of Biomedical Engineering
关键词 HRV 混沌 代替数据法 HRV Chaos Surrogate data method
  • 相关文献

参考文献10

  • 1YAMADA M. YAMASHITA T, ODA Y. Nonlinear measures of heart beat intervals differ in female patients with chest pain [J]. Nonlinear Analysis: Real World Applications, 2005, 6(1): 175-185.
  • 2AKSERLROD S, GORDON D, UBEL F A. Power spectrum analysis of autonomic function: a quantitative probe of beat cardiovascular control [J]. Science, 1981, 213: 220-222.
  • 3BURR R L, COWAN M J. Auto-regressive spectral models of heart rate variability [J]. J Electro cardiol, 1992, 10(2) : 152-156.
  • 4WILSON G F, O'DONNELL R D. Measurement of operator workload with the neurophysiological workload test battery. in P. A. Hancock and N. Meshkati (Eds.)[J]. Human Mental Workload, Amsterdam: North-Holland, 1988, 134 (4), 42-47_.
  • 5GOLDBERGER A L, WEST B J, RIGNEY D R. Chaos and fractals in human physiology [J]. Scientific American, 1990, 262: 42-49.
  • 6BALOCCHI R, BARBI M, CARPEGGIANI C. Complexity and predictability of the heartbeat time series in normal and transplanted subjects [J]. The International Conference on Nonlinear Dynamics and Chaos (ICND-96), Applications in Physics, Biology and Medicine, Saratov, Russia, 1996, 123 (5), 63-67.
  • 7CASDAGIL M. Nonlinear prediction of chaotic time series [J]. Physica D, 1989, 35, 335-339.
  • 8TSONIS A, ELSENER J. Nonlinear prediction as a way of distinguishing chaos from random fraetal sequences [J]. Nature, 1992, 358: 217-223.
  • 9KHADRA L M, MAAYAH T J, DICKHAUS H. Detecting chaos in HRV signals in human cardiac transplant recipients [J]. Computers and Biomedical Research, 1997, 30(3) : 188- 199.
  • 10HAN Q, WANG L, NIE X, et al. Some nonlinear parameters of HRV signals for healthy and arrhythmia human[J]. SICE Annual Conference 2005 in Okayama Japan, 8-10, Aug. 2005, WP1-11-3.

同被引文献5

  • 1吕可诚,王继业,常树人,张俊娟,姜恩庆.心率变异性的非线性分析──人体心搏的混沌特性[J].南开大学学报(自然科学版),1997,30(1):20-26. 被引量:1
  • 2K.K.Kim. Effect of missing RR-interval data on nonlinear heart rate variability analysis[J].Computer Methods and Programs in Biomedicine,2012,(03):210-218.
  • 3Goldberger A L,West B J,Rigney D R. Chaos and fractals in human physiology[J].Scientific American Magazine,1990.42-49.
  • 4Pincus SM.一种度量系统复杂性的方法-近似熵[J]美国国家科学院院刊,1991(06):2297-2301.
  • 5J.S.Richman. Physiological time-series analysis using approximate entropy and sample entropy Am[J].J Physiol Heart Circ,2000.2039-2049.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部