期刊文献+

闪光视觉诱发电位单次提取的自参考自相关自适应干扰对消技术

On the Auto-Reference,Auto-Correlation and Adaptive Interference Cancellation Theories and Techniques for Single Extracting Flash Visual Evoked Potential
原文传递
导出
摘要 在分析传统的诱发电位提取的叠加平均理论缺陷的基础上,根据对自发脑电信号特性的认识和诱发电位提取的特定环境,提出了闪光视觉诱发电位(FVEP)单次提取的自参考自相关自适应干扰对消理论和技术(AAA-ICT)。该技术用求诱发脑电信号与参考信号的逐点滑动相关的方法,获得与诱发脑电信号有最大相关的参考信号段,用最小二乘原理(LSM)求取诱发脑电信号中有最大相关的参考信号段的对消因子W,然后进行干扰对消以获得单次提取的FVEP。用该技术能够有效地提取FVEP信号,并能获得单个受试者FVEP的变异性。 On the basis of analyzing the defects in traditional averaging theory for extracting evoked potential (EP), and by realizing the characteristic of spontaneous eleetroencephalo-signal (S-EES) as well as the special environment for extracting EP, we propose an auto-reference, auto-correlation, adaptive interference cancellation (AAA- ICT) for use in the single trial of flash visual evoked potential (FVEP). Firstly, the segment of reference signal, which has the best correlation with evoked electroencephalo-signal (E-EES), was obtained using the method for calculating the sliding correlation point by point between E-EES and reference signal; then, the cancellation factor between E-EES and the most correlative reference signal segment was derived by the least square method; at last, the single trial of FVEP was acquired by interference cancellation. By this method, FVEP can be extracted perfectly and the FVEP variability of individual inter-stimulation can be obtained.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第5期1094-1100,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30670536)
关键词 闪光视觉诱发电位 单次提取 自参考自相关自适应干扰对消 自发脑电信号 Flash visual evoked potential (FVEP) Single extraction Auto-reference,auto-correlation,adaptive interference cancellation (AAA-ICT) Spontaneous electroeneephalo-signal (S-EES)
  • 相关文献

参考文献16

  • 1SCHMIDT R F, THEWS G. Human physiology[M]. Berlin: Springer-Verlag, 1983: 151-157.
  • 2聂能,尧德中,谢正祥.生物医学数字信号处理技术及应用[M].北京:科学出版社,2005,289-291.
  • 3PEACOCK S M Jr. Averaged "After-activity" and the alpha regeneration cycle[J]. Electro-Eneephalogr Clin Neurophysiol, 1970, 28(3): 287-295.
  • 4BABILONIC C, VECCHIO F, BULTRINI A, et al. Pre- and poststlmulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study[J]. Cereb Cortex,2006, 16(12):1690-1700.
  • 5IYER D, ZOURIDAKIS G. Single-trial evoked potential estimation:Comparison between independent component analysis and wavelet denoising[J]. Clin Neurophysiol, 2007, 118(3): 495-504.
  • 6THAKOR N V. Adaptive filtering of evoked potentials[J]. IEEE Trans Biomed Eng, 1987, 34(11): 6-12.
  • 7VAZ C A, THAKOR N V. Adaptive fourier estimation of time-varying evoked potentials[J]. IEEE Trans Biomed Eng, 1989, 36(4): 448-455.
  • 8LAM B S, HU Y, LU W W, et al. Multi-adaptive filtering technique for surfaee somatosensory evoked potentials processing[J]. Med Eng Phys, 2005, 27(3) : 257-256.
  • 9WESTERKAMP J J, WILLIAMS R. Adaptive estimation of single response evoked potentials[J]. Biol Psychol, 1995, 40 (1-2): 161-168.
  • 10PARSA V, PARKER P A. Multireferenee adaptive noise cancellation applied to somatosensory evoked potentials[J]. IEEE Trans Biomed Eng, 1994, 41(8): 792-800.

二级参考文献12

  • 1Gish H, Cochran D. Generalized Cohcrence.In:Proceedings-ICASSP, IEEE Into'national Conference on Acoustics, Speech and Signal Processing. New York, NY, USA: IEEE 1988.2745-2748.
  • 2Lee TW, Amari SI, Cichocki AC. Independent component analysis using an extended informax algorithm for mixed Subgaussian and Supergaussian source. Neural Computation,1999,11 (2):409o-433.
  • 3Aapo H. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transaction on Network, 1999,10(3):626-634.
  • 4Wei Q, Fung KSA, Chan FHY, Lain FK, Poon PWF,Hamemik pp. Adaptive filtering of evoked potentials with radial-basis-function neural network prefilter. IEEE Transaction on Biomedical Engineering, 2002,49(3):225-232.
  • 5Hyvarimen A. Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters, 1999; 6(6) : 145.
  • 6Akuzawa T. Extended quasi-Newton method for the ICA. In:Proc of the International Workshop on Independent Component Analysis and Blind Signal Separation, 2000:521.
  • 7Akuzawa T. Multiplicative algorithm for orthogonal groups and Independent Component Analysis. Brain Science Institute,2000:1.
  • 8Akuzawa T. Extreme event analysis package for matlab.http://www. mns. brain, riken, go.jp/-akuzawa/.
  • 9Documentation 2nd Wadsworth BCI Dataset (P300 Evoked Potentials ) : httpt//ida.first. fraunhofer. de/- blanker/competition/.
  • 10封根泉,心脑电图电子计算机分析的原理和应用,1986年

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部