期刊文献+

非热弹性马氏体相变的细观本构模型 被引量:1

A micro-mechanical model of non-thermo-elastic martensitic transformation
下载PDF
导出
摘要 为了更清楚地认识铁基合金经受非热弹性马氏体相变的本征特性,在细观尺度对非热弹性马氏体相变进行了研究.基于马氏体相变晶体学和内变量本构理论建立了非热弹性马氏体相变的细观本构模型.该模型采用微区相变应变、奥氏体及马氏体的塑性应变表征宏观的非弹性响应,把奥氏体和马氏体变体的等效塑性应变率和体积分数变化率作为内变量描述微观结构变化.模型采用J2流动理论描述微区塑性流动,与采用晶体塑性的描述方法相比模型更简单,且更适用于工程计算.单晶奥氏体单变体简单剪切的模拟结果表明:随着应变的增加,先发生奥氏体塑性变形,进而发生相变,马氏体体积分数与应变呈线性关系;温度较低时易发生马氏体相变并使得材料的强度提高. In order to describe the intrinsic characteristic of ferrous alloy during martensitic transformation, micro-mechanical behavior of non-thermo-elastic martensitic transformation was investigated. Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micro-mechanical constitutive model of non-thermo-elastic martensitic transformation was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were taken as the internal variables describing the microstructure evolution of the micro-domain. The constitutive equation of an austenitic single crystal was presented. Only plasticity in the sense of J2 flow theory was considered at the level of micro-region because of high calculation efforts. The micro-mechanical model was applied to the behavior study under uniaxial loading. It is showed that non-thermo-elastic martensitic transformation occurs with the increasing strain, which enhances the intensity of the material.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2009年第4期445-449,共5页 Materials Science and Technology
基金 国家自然科学基金资助项目(50575124)
关键词 非热弹性马氏体相变 细观本构模型 J2流动理论 non-thermo-elastic martensitic transformation micro-mechanical model J2 flow theory
  • 相关文献

参考文献15

  • 1GREENWOOD G W, JOHNSON R H. Deformation of metals under small stresses during phase transforma- tions[J]. Roy Soc Lond-roc Trans Ser A, 1965, 283 (1394) : 403 -422.
  • 2CORET M, COMBESCURE A. A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels) [J]. Int J Mech Sci, 2002, 44 (9) : 1947 - 1963.
  • 3MAGEE C L. Transformation kinetics, microplasticity and aging of martensite in Fe31Ni[ D]. Pittsburg PA: Carnegie Inst. Technologie, College of Engineering and Science, 1966.
  • 4LAKHDAR T, SOPHIE P. New investigations on transformation induced plasticity and its interaction with classical plasticity[J]. Int J Plasticity, 2006, 22:110 - 130.
  • 5严文裔,孙庆平,黄克智.热弹性马氏体相变材料单晶体的细观力学统一本构模型[J].中国科学(A辑),1998,28(3):275-282. 被引量:2
  • 6LEVITAS V I, IDESMAN A V, STEIN E. Shape memory alloys: Micromechanical modeling and numerical analysis of structures [J].J Intell Mater Syst Struct, 2000, 10(12):983-996.
  • 7PEULTIER B, BEN ZINEB T, PATOOR E. Macroscopic constitutive law of shape memory alloy thermo- mechanical behaviour: Application to structure compu- tation by FEM [ J ]. Mech Mater, 2006, 38 (5 - 6) : 510 - 524.
  • 8MARKETZ F, FISCHER F D. Micromechanical study on the coupling effect between microplastic deformation and martensitic transformation [ J ]. Comp Mater Sci, 1994, 3(2) : 307 -325.
  • 9LEVITAS V I, IDESMAN A V, STEIN E, et al. Simple micromechanical model for pseudoelastic behavior of CuZnA1 alloy[J]. J Intell Mater Syst Struct, 1998, 9(5) : 324 -334.
  • 10CHERKAOUI M, BERVEILLER M. Micromechanieal modeling of the martensitie transformation induced plasticity in steels [ J ]. Smart Mater Struct, 2000, 9(5) : 592 -603.

共引文献1

同被引文献33

  • 1Yang J B, Yang Z G, Nagai Y, et al. A crystallographic model of fec/bcc martensitic nucleation and growth[J]. Acta Met, 2010,58 : 1599.
  • 2Han H N, Oh Ch S, Kim G, et al. Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechani- cally induced martensitic transformation[J]. Mater Sci Eng, A, 2009,499 : 462.
  • 3Lee M G, Kim S J, Han H N. Crystal plasticity finite ele- ment modeling of mechanically induced martensitic transfor- mation (MIMT) in metastable austenite[J]. Int J Hast, 2010,26 : 688.
  • 4Choi K S, Liu W N, Khaleel M A. Microstructure-based constitutive modeling of TRIP steel prediction of ductility and failure modes under different loading conditions[J]. Ac- ta Mater, 2009,57 : 2592.
  • 5Antretter T, Zhang D F, Parteder E. Modelling transforma- tion induced plasticity--An application to heavy steel plates [J]. Steel Res Int, 2010,81(8) : 675.
  • 6Han H N, Lee Ch G, Suh D W, et al. A microstructure- based analysis for transformation induced plasticity and me- chanically induced martensitic transformation[J]. Mater Sci Eng A, 2008,485 : 224.
  • 7Koistinen D P, Marburger R E. A general equation prescri- bing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall,1959,7(1) :59.
  • 8Olson G B, Cohen M. Kinetics of strain-induced martensitic nueleation[J]. Metall Mater Trans A, 1975,6(3) : 791.
  • 9Stringfellow R G, Parks D M, Olson G B. A constitutive model for transformation plasticity accompanying strain-in- duced martensitic transformations in metastable austenitic steels[J]. Acta Metall Mater, 1992,40(7) : 1703.
  • 10Tomita Y, Iwamoto T. Constitutive modeling of trip steel and its application to the improvement of mechanical proper- ties[J]. Int J Mech Sci, 1995,37(12) : 1295.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部