期刊文献+

一种适用于超多类手写汉字识别的新改型Adaboost算法 被引量:2

The modified Adaboost algorithm for Chinese handwritten character recognition
下载PDF
导出
摘要 提出一种适用于超多类手写汉字识别的新改型Adaboost算法,采用基于描述性模型的多类分类器(modified quadratic discriminant function,MQDF)作为Adaboost基元分类器,可直接进行多类分类,无需将多类问题转化为多个两类问题处理,其训练复杂度大大低于已有的多类Adaboost算法。算法提出根据广义置信度更新样本权重,实验证明这种算法适用于大规模多类分类问题。为了降低算法的识别复杂度,提出从所有训练后得到的Adaboost基元分类器组中选择一个最优的基元分类器作为最终分类器的方法进行删减。在HCL2000及THOCR-HCD数据集上进行实验证明,所提改型Adaboost算法提高了识别率的有效性,该算法的相对错误率比现有最优算法分别下降了14.3%,8.1%和19.5%。 The proposed modified Adaboost algorithm adopts the descriptive model based on multi-class classifiers (modified quadratic discriminant function, MQDF) as element classifiers which perform multi-class classification directly. It does not need to convert multi-class classifications to multiple binary classifications and has lower training complexity. Besides, it updates sample weights according to the generalized confidence which is simple and effective. In order to reduce the recognition complexity, the pruning method was performed to pick out only one best element classifier from all boosted classifiers to do the classification. Applying the algorithm to Chinese handwritten character recognition on HCL2000 and THOCR-HCD databases, the relative error rate reduced 14.3 %, 8.1% and 19.5 % respectively.
作者 丁晓青 付强
出处 《中国工程科学》 2009年第10期19-24,31,共7页 Strategic Study of CAE
基金 国家自然科学基金资助项目(60472002) 国家"八六三"高科技研究发展计划(2006AA01Z115)
关键词 多类Adaboost算法 手写汉字识别 广义置信度 改进的二次鉴别函数 multiclass Adaboost algorithm Chinese handwritten character recognition generalized confidence modified quadratic discriminant function
  • 相关文献

参考文献10

  • 1Friedman J, Hastie T, Tibshirani R. Additive logistic regression:a statistical view of boosting[ J]. The Annals of Statistics, 2000, 28(2) :337 -407.
  • 2Scbapire R E, Singer Y. Improved boosting algorithms using confidence - rated predictions [ J ]. Machine Learning, 1999, 37 (3) : 297 - 336.
  • 3Freund Y, Schapire R E. A decision - theoretic generalization of on - line learning and an application to boosting [ J ]. Journal of Computer and System Sciences, 2006, 55(1) : 119 - 139.
  • 4Guruswami V, Sahai A. Muhiclass learning, boosting, and error - correcting codes [ A ]. Proceedings of the twelfth Annual Conference on Computational Learning Theory [ C ]. Santa Cruz, USA: ACM, 1999:145- 155.
  • 5Schapire R. Using output codes to boost multiclass learning problems[ A]. Proceedings of the fourteenth International Conference on Machine Learning [ C ]. Nashville, USA : Morgan Kaufmann Publishers Inc, 1997:313 - 321.
  • 6Liu C L, Fujisawa H. Classification and learning for character recognition: comparison of methods and remaining problems [ A ]. Proceedings of the First IAPR TC3 Workshop on Neural Networks and Learning in Document Analysis and Recognition [ C ]. Seoul, Korea : IEEE, 2005 : 1 - 7.
  • 7Liu H L, Ding X Q. Handwritten character recognition using gradient feature and quadratic classifier with multiple discrimination schemes[ A]. Proceedings of the Eighth International Conference on Document Analysis and Recognition [ C ]. Seoul, Korea: IEEE, 2005:19 -25.
  • 8Liu H L, Ding X Q. Improve handwritten character recognition performance by heteroscedastic linear discriminant analysis [ A ]. The Eighteenth International Conference on Pattern Recognition [ C ]. Hongkong, China, 2006:880 - 883.
  • 9Kimura F, Takashina K, Tsuruoka S, etc. Modified quadratic discriminant functions and its application to Chinese character recognition [ J]. IEEE Trans on Pattem Analysis and Machine Intelligence, 1987, 9(1): 149-153.
  • 10Lin X F, Ding X Q, Chen M, etc. Adaptive confidence transform based classifier combination for Chinese character recognition [J]. Pattern Recognition Letters, 1998, 19 (10) :975 - 988.

同被引文献21

  • 1李鑫,惠晓威,张全贵.脱机汉字识别技术研究的方法及发展趋势[J].计算机时代,2005(1):1-2. 被引量:2
  • 2张秀梅.采用元数据整合模式建立电子图书分类检索[J].科技资讯,2006,4(2):118-119. 被引量:1
  • 3刘灵丽,李丽娟.指纹图像预处理和特征提取[J].计算机工程,2006,32(16):190-192. 被引量:16
  • 4中国图书商报社.2009-2010年度中国电子图书发展趋势报告(2010年4月),http://wenku.baidu.corn/view/1201b78a6529647d2728520f.html.
  • 5刘长松 郭繁夏.印刷汉字识别方法综述.人工智能网,2010,(3):67-59.
  • 6Liu C L, Fujisawa H. Classification and Learning for Character Recognition:Comparison of Methods and Remaining Problems [ J] ,2005(5 ) :37-42.
  • 7Tindall D W.Application of neural network techniques to automatic licence plate recognition[C]//Proceedings of European Convention on Security and Detection,Brighton,England,1995:81-85.
  • 8Trier O D,Jain A K T.Feature extraction methods for character recognition A survey[J].Pattern Recognition,1996,9(4):641-662.
  • 9Wang X,Ding X,Liu C.Gabor filters-based feature extraction for character recognition[J].Pattern Recognition,2005,38(3):369-379.
  • 10Dai R,Liu C,Xiao B.Chinese character recognition:History,status and prospects[J].Frontiers of Computer Science in China,2007,1(2):126-136.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部