期刊文献+

电子回旋共振放电中电子能量分布特性的研究

Research on Electron Energy Distribution Features in Electron Cyclotron Resonance Discharge
下载PDF
导出
摘要 建立了电子回旋共振(ECR)放电的粒子模型,编制了准三维电磁模粒子模拟与蒙特卡罗模拟程序。通过对氩气ECR放电电离过程的理论分析与数值模拟,得到了放电稳态形成时不同放电区域的电子能量分布。研究了不同中性气压以及外加磁场位形对这些区域中电子能量分布特性的影响。随着中性气压的升高,远离ECR区域中的低能电子减少,高能电子增加,而ECR区域中电子能量分布变化特征与之相反;相对于收敛磁场位形,磁镜磁场位形更有利于约束放电下游区的电子能量以及电子能量分布的宽度。 The code with quasi-three-dimensional electromagnetic particle-in-cell plus Monte Carlo collision (PIC/MCC) method is proposed for the research of ionization process of argon electron cyclotron resonance (ECR) discharge. The electron energy distributions in different regions of ECR reactor are obtained when the steady state of ECR discharge attains, and the variations of these distributions with neutral pressure and external magnetic field are also discussed. As the neutral pressure increases, the low energy electrons decrease and the high energy ones increase at the region away from ECR layer, while the variations of electron energy distribution with neutral pressure are opposite at ECR layer. In the far downstream region, the electron energy confinements are better with the mirror-type magnetic configuration than with the convergence-type one. The simulation results and discussions are useful for the optimization of the ECR plasma applied in deposition, etching or other micro-electronic fabrications.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第5期562-567,共6页 Journal of University of Electronic Science and Technology of China
基金 博士点基金(200806141034) 国家自然科学基金(10876005)
关键词 电子回旋共振放电 电离 蒙特卡罗方法 粒子模拟方法 electron cyclotron resonance discharge ionization Monte Carlo collision method particle-in-cell method
  • 相关文献

参考文献13

  • 1LU Y F, SUN J, YU D, et al. Electron cyclotron resonance plasma assisted pulsed laser deposition for compound host film synthesis and in situ doping[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006, 24(3): 413-417.
  • 2HSU C H, HUANG Y F, CHEN L C, et al. Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006, 24(1): 308-311.
  • 3AKAZAWA H, SHIMADA M. Factors driving c-axis orientation and disorientation of LiNbO3 thin films deposited on TiN and indium tin oxide by electron cyclotron resonance plasma sputtering[J]. Journal of Applied Physics, 2006, 99(12): 124103.
  • 4KATO Y, FURUKI H, ASAJI T, et al. Production of multicharge ions and behavior of microwave modes in an electron cyclotron resonance ion source directly excited in a circular cavity resonator[J]. Review of Scientific Instruments, 2006: 7703A336.
  • 5GIRARD A, HITZ D, MELIN G, et al. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology[J]. Review of Scientific Instruments, 2004, 75(5): 1381-1388.
  • 6LIGHT M, MADZIWA-NUSSINOV T G, COLESTOCK P, et al. Electron beam generation by an electron cyclotron resonance plasma[J]. IEEE Transactions on Plasma Science, 2009, 37(2): 317-326,.
  • 7MAUNOURY L, PIERRET C, BIRI S, et al. Studies of the ECR plasma using the TrapCAD code[J]. Plasma Sources Science and Technology, 2009, 18(1): 015019.
  • 8TODD D S, LEITNER D, LYNEIS C M, et al. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS[J]. Review of Scientific Instruments, 2008, 79(2): 02A316.
  • 9SPADTKE P. The physics of ion beam extraction from an electron cyclotron resonance ion source[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1569-1573.
  • 10GAMMINO S, CIAVOLA G, CELONA L G, et al. Numerical simulations of the ecr heating with waves of different frequency in electron cyclotron resonance ion sources[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1552-1568.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部