期刊文献+

直扩通信中时变幅度LFM干扰的抑制 被引量:3

Suppression of Time-varying Amplitude LFM Interference in DSSS Communication
下载PDF
导出
摘要 本文针对直扩通信中的时变幅度线性调频干扰,提出了一种基于分数阶Fourier变换的干扰抑制算法。该算法利用两个角度的分数阶Fourier功率谱和拟Newton迭代法进行参数估计,并在参数估计的基础上,采用分数阶Fourier域干扰分离法进行干扰抑制。与基于二维搜索参数估计的干扰抑制算法相比,该算法在保证干扰抑制性能的前提下,大大缩减了计算量。仿真结果表明,该算法可以在较大干信比范围内有效抑制时变幅度线性调频干扰。 This paper presents an interference suppression algorithm based on fractional Fourier transform in order to suppress time-varying amplitude LFM interference in Direct Sequence Spread Spectrum communication. The parameters are estimated via fractional Fourier power spectrum in two angles and Newton iterative method. Then, interference is suppressed through interference separation in fractional Fourier domain using estimated parameters. Compared with interference suppression algorithm based on two-dimensional searching, this algorithm has same performance and smaller amount of computation. Simulation results show that the algorithm can suppress time-varying amplitude LFM interference efficiently in large jamming-signal-rate range.
出处 《信号处理》 CSCD 北大核心 2009年第10期1560-1564,共5页 Journal of Signal Processing
关键词 时变幅度 线性调频 分数阶Fourier功率谱 拟Newton迭代 干扰分离 time-varying amplitude LFM fractional Fourier power spectrum Newton iteration interference separation
  • 相关文献

参考文献11

  • 1L. B. Milstein. Interference rejection techniques in spread spectrum communications [ J ]. Proceedings of the IEEE, 1988,76(6) :657-671.
  • 2M. J. Medley, G. J. Saulnier, and P. K. Das. Narrow-band interference excision in spread spectrum systems using lapped transforms [ J ]. IEEE Transactions on Communications,1997,45( 11 ) : 1444 - 1455.
  • 3Xuemei Ouyang, M. G. Amin. Short-Time Fourier Transform Receiver for Nonstationary Interference Excision in Direct Sequence Spread Spectrum Communications [ J ]. IEEE Transactions on Signal Processing, 2001,49 ( 4 ) : 851 - 863.
  • 4S. R. Lach, M. G. Amin, A. R. Lindsey. Broadband nonstationary interference excision for spread spectrum communications using time-frequency synthesis [ C ]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Seahle, 1998,6:3257-3260.
  • 5齐林,陶然,周思永,王越.DSSS系统中基于分数阶傅立叶变换的扫频干扰抑制算法[J].电子学报,2004,32(5):799-802. 被引量:29
  • 6齐林,陶然,周思永,王越.直接序列扩频系统中线性调频干扰的抑制[J].兵工学报,2004,25(4):431-435. 被引量:8
  • 7T. Alieva, M. J. Bastiaans, L. Stankovic. Signal Reconstruction From Two Close Fractional Fourier Power Spectra [J]. IEEE Transactions on Signal Processing, 2003,51 (1) ,112-122.
  • 8H. M. Ozaktas, O. Arikan, M. A. Kutay, et al. Digital computation of the fractional Fourier transform [ J ]. IEEE Transactions on Signal Processing, 1996,44 ( 9 ) : 2141- 2150.
  • 9齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759. 被引量:175
  • 10C. Carlemalm, H. V. Poor and A. Logothetis. Suppression of Multiple Narrowband Interferers in a Spread-Spectrum Communication System [ J ]. IEEE Journal on Selected Areas in Communications ,2000,18 ( 8 ), 1365-1374.

二级参考文献36

  • 1Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Proc IEEE, 1992, 80(4): 519-569.
  • 2Diuric P M. Kay S M. Parameter estimation of china signal. IEEE Trans on ASSP, 1990, 38(12): 2118-2126.
  • 3Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans on SP, 1997, 45(2): 316-327.
  • 4Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans on AES, 1986, 22(6):708-715.
  • 5Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans on AES, 1991, 27(4):607-615.
  • 6Haimovich A M, Peckham C, Teti J G, et al. SAR imagery of moving targets: Application of time-frequency distributions for estimating motion parameters. In: Proc 1994 SPIE's International Symposium on Aerospace and Sensing, 1994. 2238:238-247.
  • 7Rao P, Taylor F J. Estimation of instantaneous frequency using the discrete wigner distribution. Electronics Letters, 1990,26(4): 246-248.
  • 8Choi H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans on SP, 1988, 37(6): 862-871.
  • 9Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans On SP, 1995,43(6): 1511-1515.
  • 10Namias V. The fractional Fourier transform and its application in quantum mechanics. J Inst Appl Math, 1980, 25:241-265.

共引文献201

同被引文献69

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部