期刊文献+

一种支持向量机的动态自适应加权算法 被引量:2

An Adaptive Weighted Support Vector Machine for Regression
下载PDF
导出
摘要 针对现有回归型加权支持向量机直接选择加权系数法存在的不足,提出了一种对加权系数进行寻优的新方法——动态自适应加权算法.通过对权系数进行的自适应迭代调整,以确定其最优值,并进行了实验仿真.仿真结果表明:采用该方法确定的最优加权系数,可以对预测样本数据进行更准确的回归估计. Against direct selection method of weighting coefficients in the existing weighted support vector machines(WSVM),we present a new weighting coefficient optimization algorithm-adaptive weighted support vector machine(AWSVM).Through adaptive iterations,weighting coefficients are adjusted in order to determine its optimal value.Experimental results show that using the optimal weighting factor determined by this new method,we can predict the sample data for more accurate regression estimates.
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2009年第4期282-285,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 山东省自然科学基金资助项目(Y2006G22)
关键词 支持向量机 回归 加权系数 自适应加权支持向量回归机 support vector machine(SVM) regression weighting factor adaptive weighted support vector machine(AWSVM)
  • 相关文献

参考文献7

  • 1吴世忠.应用密码学-算法-协议于C源程序[M].北京:机械工业出版社,2000.
  • 2冯登国 周永彬 张振峰 译.密码工程实践指南[M].北京:清华大学出版社,2001..
  • 3Vapnik V N. The Nature of Statistical Learning [ M ]. Berlin: Springer Verlag, 1995.
  • 4杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306. 被引量:22
  • 5Lin Chunfu,Wang Shengde. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks,2002,13 (2) :464 -471.
  • 6Toy Feb, Cao L J. Descending Support Vector Machines for financial time series forecasting [ J ]. Neural Processing Letters ,2002,15 (2) : 179-195.
  • 7Robert E S. Improved Boosting Algorithms Using Confidence-rated Predictions [ J J. Machine Learning, 1999,37 : 297 -336.

二级参考文献6

  • 1[2]LIN Chun-fu, WANG Sheng-de. Fuzzy support vector machines [J]. IEEE Trans on Neural Networks, 2002,13(2) :464-471.
  • 2[3]TOY F E H, CAO L J. Descending support vector machines for financial time series forecasting [J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 3[4]TOY F E H, CAO L J. Modified support vector machines in financial time series forecasting [J]. Neurocomputing, 2002, 48: 847- 861.
  • 4[5]VAPNIK V N. The nature of statistical learning [M].Berlin: Springer, 1995.
  • 5[6]FLAKE G W, LAWRENCE S. Efficient SVM regression training with SMO [J]. Machine Learning, 2002,41(1): 271-290.
  • 6[7]TAY F E H, CAO L. Application of support vector machines in financial time series forecasting [J]. Omega The International Journal of Management Science,2001, 29(4):309-317.

共引文献27

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部