期刊文献+

位平面分解的人脸识别集成方法研究 被引量:1

Ensemble Methods for Face Recognition Based on Bit-plane Decomposition
下载PDF
导出
摘要 研究了基于集成技术的人脸识别,主要包括集成个体分类器的生成与分类结果的融合.为了提高分类器个体间的差异性,通过位平面分解及移动窗口技术生成基分类器,然后对所分解模式的各层进行融合,以确定最后的决策,这些融合方法包括乘法规则、和规则、多数投票规则、最大值规则、最小值规则与中值规则.另外,针对ORL数据库,实验研究了不同融合方法的人脸识别的性能,并对不同的人脸识别方法的性能进行了比较.结果表明,在基于位平面分解的人脸识别集成方法中,应用和规则的融合方法,其性能也优于其他的人脸识别方法. Face recognition is studied based on ensemble technique which mainly consists of constructing individual classifiers and fusing classifical results.In order to improve diversity between individual classifiers,the idea of bit-plane decomposition is used and Moving Window Classifier(MWC) is considered as a basic individual classifier.Then the decomposed pattern layers are fused jointly to make a final decision.The used fusion methods include product rule,sum rule,majority vote rule,max rule,min rule and median rule. Moreover, experimental studies are conducted with face images in ORL databases to show face recognition' s per- formance based on ensemble learning. And performance of other different face recognition' s methods is com- pared with one of face recognition method based on ensemble technique. Experimental results show that performance of using sum rule fused method for face recognition based on bit-plane decomposition is supe or to one of other face recognition' s method.
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2009年第4期286-290,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 河北省自然科学基金资助项目(F2009000236)
关键词 人脸识别 位平面分解 集成方法 移动窗口分类器 face recognition bit-plane decomposition ensemble method moving window classifier
  • 相关文献

参考文献9

  • 1Hoque M S, Fairhurst M C. Face recognition using the moving window classifier[ C ]//The 11 th British Machine Vision Conference, Bristol, UK, September 11 - 14, 2000. Bristol: British Machine Vision Association, 2000.
  • 2Lin S, Kung S, Lin L. Face recognition/detection by probabilistic decision based neural network[ J ]. IEEE Transaction on Neural Networks, 1997, 8(1) :114-132.
  • 3董火明,高隽,汪荣贵.多分类器融合的人脸识别与身份认证[J].系统仿真学报,2004,16(8):1849-1853. 被引量:17
  • 4Wang X, Tang X. Random sampling Ida for face recognition [ C ]//The 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, USA, June 27 - July 2, 2004. Washington: IEEE Computer Society ,2004.
  • 5Sirlantzis K, Hoque S, Fairhurst M C. Diversity in multiple classifier ensembles based on binary feature quantisation with application to face recognition [ J ]. Applied Soft Computing, 2008, 8 (1):437-445.
  • 6Lu J, Plataniotis K N, Venetsanopoulos A N, et al. Ensemble-based discriminant learning with boosting for face recognition [ J ]. IEEE Transactions on Neural Networks,2006, 17(1) :166-178.
  • 7Hoque M S, Fairhurst M C. A moving window classifier for off-line character recognition [ C ]//7th International Workshop on Frontiers in Handwriting Recognition, Amsterdam, Netherlands, September 11 - 13,2000. Nijmegen: International Unipen Foundation ,2000.
  • 8Kittler J, Hatef M, Duin R P, et al. On combining classifiers[ J ]. IEEE Transaction Pattern Analysis and Machine Intelligence, 1998,20 (3) :226-239.
  • 9Lu X, Wang Y, Jain A K. Combining Classifiers for Face Recognition[ C]//International Conference on Multimedia and Expo, Baltimore, MD, July 6 -9, 2003. Washington: IEEE Computer Society,2003.

二级参考文献29

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2Brunelli R,Poggio T.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 3Turk M,Pentland A.Face recognition using eigenfaces [J].Proc.of IEEE,Conf.on CVPR,1991:586-591.
  • 4Moghaddam B,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.on PAMI,1997,19(7):696-710.
  • 5Swets D L,Weng J.Using discriminant eigenfeatures for image retrieval [J].IEEE Trans.on PAMI,1996,18(8):831-836.
  • 6Lee S Y,et al.Recognition of human front faces using knowledge-based feature extraction and neurofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 7Lawtence S,et al.Face recognition eigenface:a convolutioinal neural-network approach [J].IEEE Trans.on NN,1997,8(1):98-113.
  • 8Intrator N,Reisfeld D,et al.Face recognition using a hybrid supervised unsupervised neural network [J].Pattern Recognition Letters,1996,17(1):67-76.
  • 9Penev P S,Atick J J.Local Feature Analysis:A general statistical theory for object representation [J].Network:Computation in Neural Systems,1996,7(3):477-500.
  • 10Zhang J,et al.Face recognition:eigenface,elastic matching and neural nets [J].Proc.of IEEE,1997,85(9):1422-1435.

共引文献16

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部