期刊文献+

基于A-极大单调算子的三步迭代算法 被引量:1

Three-Step Iteration about A-maximal Monotone Framework
下载PDF
导出
摘要 介绍了用三步迭代算法求解A-极大单调算子的不动点问题和用预解算子研究包含问题的解.同时给出了在某些条件下,三步迭代算法的收敛性.该文中的结论是在Noor,Huang的算法及Ram U.Verma的背景下启发得到. We suggest and analyze three-step iterations for finding the common element of the set of fixed points of a A-maximal monotone mapping and the set of the solutions of the inclusion problem using the resolvent operator technique.We also study the convergence criteria of the three-step iterative method under some mild conditions.Our result is illumined from the algorithm of Noor,Huang,and the background of Ram U.Verma.
出处 《应用泛函分析学报》 CSCD 2009年第3期274-276,共3页 Acta Analysis Functionalis Applicata
关键词 非扩张映像 A-极大单调 包含问题 nonexpansive mappings A-maximal monotone inclusion problem
  • 相关文献

参考文献8

  • 1Weng X L. Fixed point iteration for local strictly pseudocontractive mappings[J]. Proc Am Math Soc, 1991,113:727 -731.
  • 2Bnouhachem A, Aslam Noor M. Three-step iterative algorithms for mixed variational inequalities [J]. Appl Math Comput, 2006,183 : 322-327.
  • 3Noor M A. New approximation schemes for general variational inequalities[J]. J Math Anal Appl,2000, 251:217-229.
  • 4Noor M A. Some developments in general variational inequalities[J]. Appl Math Comput, 2004,152:199- 277.
  • 5Aslam Noor M. General variational inequalities and nonexpansive mappings[J]. J Math Anal Appl,2007, 231:810-822.
  • 6Aslam Noor M, Bnouhachem A. On an iterative algorithm for general variational inequalities[J]. Appl Math Comput ,2007,185 : 155-168.
  • 7Ram U Verma. A hybrid proximal point algorithm based on the (A,η)-maximal[J]. Appl Math Lett, 2008, 21(2): 142-147.
  • 8Aslam Noor M, Huang Z Y. Some resolvent iterative methods for variational inclusions and nonexpansive mappings[J]. Appl Math Comput ,2007,152:199-277.

同被引文献16

  • 1刘双,李海龙.用差分方程模型模拟北京2003年SARS疫情[J].生物数学学报,2006,21(1):21-27. 被引量:11
  • 2Elaydi S. An introduction to difference equations [ M ]. 3rd Ed. Berlin: Springer, 2005.
  • 3Erbe L H, Zhang B G. Oscillation of discrete analogues of delay equations [ J]. Differential and Integral Equa- tions, 1989, 2(3): 300-309.
  • 4Ladas G, Philos Ch G, Sficas Y G. Sharp conditions for the oscillation of delay difference equations [ J ]. Journal of Applied Mathematics and Simulation, 1989, 2 (2) : 101-111.
  • 5Dosly O, Kratz W. Oscillation theorems for symplectic difference systems [ J ]. Journal of Difference Equations and Applications, 2007, 13 (7) : 585-605.
  • 6Agarwal R P, Grace S R, O' Regan D. On the oscillation of certain second order difference equations [ J]. Journal of Difference Equations and Applications, 2003, 9 ( 1 ) : 109-119.
  • 7Thandapani E, Arul R, Raja P S. Oscillation of first or- der neutral delay difference equations[ J]. Applied Math- ematics E-Notes, 2003, 3: 88-94.
  • 8Tang X H, Yu J S. Oscillations of delay difference equa-tions[ J]. Computers & Mathematics with Applications, 1999, 37(7) : 11-20.
  • 9Lalli B S, Zhang B G. Oscillation of difference equations [J]. Colloquium Mathematicum, 1993, 65: 25-32.
  • 10贾茗,申建华.一类时滞差分方程的振动准则[J].系统科学与数学,2007,27(5):691-696. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部