期刊文献+

一类极小问题解的存在性 被引量:1

Existence of a Class of Minimization Problems
下载PDF
导出
摘要 在Luminita A.Vese文章中给出的一个重要泛函算法的基础上,讨论了此泛函的一些其它理论结论,即利用Γ-收敛的性质得到该泛函极小点存在问题,泛函的变量空间的弱*列紧等性质.同时讨论了在图像处理中一个相关泛函的极小点存在问题. The main goal of this paper is to discuss existence of solution about the functional minimization in image processing.Following the ideas of Luminita A.Vese,we show the existence of solutions of the functional minimization problem by Γ-convergence.At the same time,we also give the existence of solutions of the other functional minimization problem.
作者 芮杰 李维国
出处 《应用泛函分析学报》 CSCD 2009年第3期284-288,共5页 Acta Analysis Functionalis Applicata
关键词 弱*收敛 下半连续 极小点 Γ-收敛 weak* convergence lower semi-continuity minimum point Γ-convergence
  • 相关文献

参考文献8

  • 1Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations [J]. University Lecture Series AMS, 2002,22.
  • 2Luminita A Vese, Stanley JOsher. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. UCLA C. A. M. Report,2002,02-19.
  • 3Chambolle A, Lions P L. Image recovery via total variation minimization and related problems[J]. Numer Math, 1997,76 : 167-188.
  • 4Vese L. A study in the BV space of a denoising-deblurring variational problem[J]. Applied Mathematics and Optimization ,2001,44(2) :131-161.
  • 5Andreu F, Ballester C, Caselles V, et al. Minimizing total variation flow[J]. Diff Int Eqs,2001,4(3): 321-360.
  • 6Crandall M G, Liggett T M. Generation of nonlinear transformations on general Banach spaces[J]. Amer J Math,1971,93:265-298.
  • 7张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 8Aubert Gilles, Pierre Kornprobst. Mathematical Problems in Image Processing [M]. New York: Springer Verlag, 2002.30-70.

共引文献60

同被引文献14

  • 1Lichenwski A,Teman R. Pseudosolutions of the time dependent minimal surface problem[J].Journal of Differential Equations,1978.340-364.
  • 2Zhou X. An evolution problem for plastic antiplanar shear[J].Appl Math Optm,1992.263-285.
  • 3Wittbold P. Nonlinear diffusion with absorption[J].Pot Anal,1997.437-465.
  • 4Hardt R,Zhou X. An evolution problem for linear growth functionals[J].Communications in Partial Differential Equations,1994.1879-1907.
  • 5Demengel F,Temam R. Convex functions of a measure and aplications[J].Indiana University Mathematics Journal,1984.673-709.
  • 6Lin F H,Yang X P. Geometric Measure Theory[M].Beijing-New York:Science Press-International Press,2002.
  • 7Andreu F,Caselles V,Mazón J M. Parabolic quasilinear equations minimizing linear growth functionals[J].Progress in Math,2004,(223).
  • 8Anzellotti G. Pairings between measures and bounded functions and compensated compactness[J].Ann di Matematica Pura ed App,1993.293-318.
  • 9Anzellotti G. The Euler equatuin for functionals with linear growth[J].Transactions of the American Mathematical Society,1985,(290):483-500.
  • 10Ph Benilan,Crandall M G. Comepletely Accretive Operators[A].New York,USA:Marcel Dekker,Inc,1991.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部