期刊文献+

General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation

General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation
下载PDF
导出
摘要 The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate. The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.
机构地区 Department of Physics
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第10期32-35,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 10504042.
关键词 Computational physics Electronics and devices Optics quantum optics and lasers Quantum information and quantum mechanics Computational physics Electronics and devices Optics, quantum optics and lasers Quantum information and quantum mechanics
  • 相关文献

参考文献23

  • 1Brub D 1998 Phys. Rev. Lett. 81 3018.
  • 2Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev.Mod. Phys. 74 145.
  • 3Dusek M, L¨utkenhaus N and Hendrych M 2006 Progress in Optics ed Wolf E (New York: Elsevier) vol 6 p 381.
  • 4Inamori H, L¨utkenhaus N and Mayers D 2007 Eur. Phys.J. D 41 599.
  • 5Huttner B, Gisin N, Mor T and Imoto N 1995 Phys. Rev.A 51 1863.
  • 6Lutkenhaus N and Jahma M 2002 New J. Phys. 4 44.
  • 7Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330.
  • 8Hwang W Y 2003 Phys. Rev. Lett. 91 057901.
  • 9Wang X B, Hiroshima T, Tomita A and Hayashi M 2007 Phys. Rep. 1 448.
  • 10Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部