期刊文献+

带启动期的GI/G/1排队的瞬时分布

The transient distribution of GI/G/1 queuing with setup period
下载PDF
导出
摘要 研究了带启动期的GI/G/1排队,利用马尔可夫骨架过程法得到系统队长{L(t),θ1(t),θ2(t)}的瞬时分布所满足的方程,并证明了它的概率分布是一线性方程的唯一最小非负解. The GI/G/1 queuing system with setup period was studied. The equation to meet the transient distribution of queue length {L(t),θ1(t),θ2(t)} was obtained by applying the approach of Markov skeleton process. It was proved that the transient distribution of queue length is the minimal nonnegative solution and also the unique bounded solution to a nonnegative linear equation.
出处 《重庆文理学院学报(自然科学版)》 2009年第5期12-14,共3页 Journal of Chongqing University of Arts and Sciences
基金 国家自然科学基金项目(10671212) 重庆文理学院科研资助课题
关键词 GI/G/1排队 启动期 马尔可夫骨架过程 瞬时分布 GI/G/1 Queue setup period Markov skeleton process transient distribution
  • 相关文献

参考文献1

二级参考文献3

  • 1岳德权,赵玮.具有延误休假的GI/M/1排队系统[J].运筹学杂志,1994,13(2):47-48. 被引量:3
  • 2Hassan M.,Atiquzzaman M. A delayed vacation model of an M/G/1 queue with applications to SVCC-based ATM networks[J].IEICE Trans.. E80-B. 1997:317-323.
  • 3Niu Z.(牛志升),Takahashi Y. A finit capacity queue with exhaustive vacation/close-dowm/setup time and Markovian arrival process[J].Questa, 1999,31:1-23.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部