期刊文献+

分类器动态集成的入侵数据流检测算法 被引量:3

Data stream intrusion detection algorithm based on dynamic classifier ensemble
下载PDF
导出
摘要 入侵数据流具有快速更新以及概念漂移的特点,静态集成分类器无法及时反映整个空间的数据分布,入侵检测正确率不高,对此,文中提出了一种单分类器动态集成的入侵检测方法,该方法动态分配各分类器权值并用区间估计检查概念漂移并更新分类器。实验结果表明,在处理超平面构造的数据流上,分类效果优于多数投票、加权投票两种静态分类方法,在真实入侵实数据集上有高检测率。 Intrusion data stream is characterized by high speed updating and concept drifting.Static classifier ensemble cannot cope with data distribution in the whole feature space,which results in low detection accuracy.ln this paper,a dynamic classifier ensemble based intrusion detection algorithm is presented,which sets the weight of each base classifier dynamically,detecting concept drifting and updating classifier ensemble by interval estimation.Experiment result shows that the proposed algorithm outperforms majority voting and weighted majority voting,two static classifier ensemble methods,and that it has high detection accuracy on real-life intrusion detection dataset.
作者 迟茜 赵楠
出处 《计算机工程与应用》 CSCD 北大核心 2009年第29期111-113,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.70571065)~~
关键词 入侵检测 数据流 动态集成 概念漂移 intrusion detection data streams dynamic ensemble concept drifting
  • 相关文献

参考文献11

  • 1Zhu Xiaodong, Huang Zhiqiu,Zhang Junhua,et al.Granular computing based intrusion detection model upon network monitor data streams[C]//2nd International Conference on Pervasive Computing and Applications.Oakland, USA: IEEE Press, 2007:414-418.
  • 2Lee W.Using genetic algorithm for network intrusion detection[C]// United States Department of Energy Cyber Security Group Training Conference.Cambridge, MA: MIT Pres, 2004:12-20.
  • 3Faraoun K M,Boukelif A.Neural networks learning improvement using the K-Means clusetring algorithm to detect network intrusions[J].Intemational Journal of Computational Intelligence.New York, USA: Springer-Verlag, 2006,3 : 161 - 168.
  • 4Lee S C,Heinbuch D V.Training a neural-network based intrusion detector to recognize novel attacks[J].IEEE Transactions on Systems, Man and Cybernetics, 2001,31 (4) : 294-299.
  • 5Oh Sang-hyun,Kang Jin-suk,Byun Yung-cheol,et al.Intrusion detection based on clustering a data stream[C]//3rd ACIS Int'l Conference on Software Engineering Research,2005 : 29-43.
  • 6Gao Jing,Fan Wei,Han Jiawei.General framework for mining concept-drifting data streams with Skewed distributions[C]//7th SIAM International Conference on Data Mining,2007:120-126.
  • 7Wang Yi,Zhang Yang.Mining data streams with Skewed distribution by static classifier ensemble[M]//Opportunities for Next-Generation Applied Intelligence,2009,214:65-71.
  • 8Chu N C N,Williams A,Alhajj R,et al.Data stream mining architecture for network intrusion detection[C]//The IEEE International Conference on Information Reuse and Integration, 2004:142-150.
  • 9Gao V,Fan W,Han J.A general framework for mining conceptdrifting data streams with Skewed distributions[C]//2007 SIAM Int Conf Data Mining,Minneapolis, USA, 2007.
  • 10The UCI KDD Archive.KDD 1999 data set[DB/OL].(1999).http:// kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

同被引文献34

  • 1孙钢,张莉,郭军.基于模糊积分的多分类器组合的入侵检测[J].计算机应用研究,2005,22(11):117-118. 被引量:2
  • 2朱有产,王健,商李彪.网络入侵检测系统的新型综合分类器[J].华北电力大学学报(自然科学版),2005,32(6):37-41. 被引量:1
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86-91. 被引量:5
  • 5Wu Su-Yun,Yen Estea'. Data Ming-based Intnlsion Dew.ors [ J]. Expert Systems with Applications,2009,36 :.5606 -5612.
  • 6Horng Shi-ffinn,Su Ming-Yang,Chen Yuan-Hsin,et ai. A Novel Intrusion Detection System Based on Hierarchical Clustering and Support Vector Machines[ J]. Expert Systems with Applications, 2011,38:306 -313.
  • 7The UCI KDD Archive. KDD 1999 Data Set[ EB/OL]. [2011 -03 -28 ]. hrtp://kdd, ics. uci. edu/databases/kddcup99/kd- dcup99, html.
  • 8TSYMBAL A. The problem of concept drift: definitions and related work [ R ]. Ireland: Computer Science Depart- ment, Trinity College :2004.
  • 9WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[ J ]. Machine Learning, 1996, 23( 1 ) :69-101.
  • 10GUO G, LI N, CHEN L F. Classification for concept - drifting data streams with limited amount of labeled data [CJ// Processings of 12th International Conference on Automatic Control and Artificial Intelligence, New Jersey: IET Press, 2012:4259-4265.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部