期刊文献+

基于低层次计算机视觉的超分辨率图像重建 被引量:2

Low-level vision based super-resolution image reconstruction
下载PDF
导出
摘要 在基于低层次计算机视觉的超分辨率图像重建过程中,角点检测和插值是两个关键的技术。首先在SUSAN角点检测算法的基础上提出了改进算法,改进后的算法根据图块对比度的不同,在确定位于不同图块中的像素的USAN面积时采用了可变灰度阈值,可变灰度阈值的采用,使得检测出的角点分布更加均匀,而角点分布均匀则使得图像配准更加精确,有利于后期的重建工作。其次,提出了一种适合于超分辨率图像重建的插值算法:基于圆区域的自适应插值算法。该算法可以根据待插值点周围的灰度特征自适应决定插值策略,将线性插值、最邻近插值和中值插值法有机地结合在一起。大量的仿真实验证明了提出算法具有运算量小、图像重建后的效果出重,易于实现。 In the process of super-resolution image reconstruction,corner detection and interpolation are two key technologies.In this paper,two approaches are proposed respectively.Firstly,an improved corner detection approach based on SUSAN principle for feature detection is proposed.It has variable thresholds for the allowed variation in brightness within the USAN.It makes corner well-distributed.Secondly,a new adaptive interpolation approach based on circular-area is proposed.The approach can adaptively seleet the interpolation method based on gray feature around the interpolated point.In this method,linear interpolation,nearestneighbor interpolation and median interpolation are merged.Experiments confirm that these algorithms are superior to others.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第29期164-167,共4页 Computer Engineering and Applications
基金 黑龙江省教育厅科学基金(No.10551115) 黑龙江省高等教育科学研究基金(No.115c-523)
关键词 角点检测 超分辨率 图像重建 SUSAN角点检测算法 自适应插值 corner detection super-resolution image reconstruction SUSAN adaptive interpolation
  • 相关文献

参考文献5

  • 1Capel D,Zisserman A.Computer vision applied to super resolution[J]. IEEE Signal Processing Magazine, 2003,20(3 ) : 75-86.
  • 2Capel D P,Zisserman A.Automated mosaicing with superresolution zoom[C]//Proc CVPR, 1998: 885-891.
  • 3Smith S M,Brady J M.SUSAN-A new approach to low level image processing TR95SMS1c[R].UK:Oxford University,1995.
  • 4Capel D P.Image mosaicing and super-resolution[D].Robotics Research Group Department of Engineering Science University of Oxford,2001 21-41.
  • 5林虹,李庆辉,樊松波.简单有效的序列图像超分辨率重建算法[J].计算机应用研究,2005,22(9):152-153. 被引量:2

二级参考文献17

  • 1CASTLEMANKR.数字图像处理[M].北京:电子工业出版社,2002..
  • 2Aizawa K, Komatsu T, Saito T. A Scheme for Acquiring Very High Resolution Images Using Multiple Cameras [J]. IEEE Conference on Audio, Speech and Signal Processing, 1992, 3:289-292.
  • 3Stark H, Oskoui P. High-resolution Image Recovery from Image-plane Arrays, Using Convex Projections [J]. Journal of the Optical Society of America, 1989,6:1715-1726.
  • 4Chen T C, deFigueiredo R J P. Two-Dimensional Interpolation by Generalized Spline Filters Based on Partial Differential Equation Image Models [J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1985, ASSP-33(3):631-642.
  • 5Hou H S, Andrews H C. Cubic Splines for Image Interpolation and Digital Filtering[J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1978, ASSP-26(6):508-517.
  • 6G Keys R. Cubic Convolution Interpolation for Digital Image Processing [J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1981, ASSP-29(6):1153-1160.
  • 7User M, Aldroubi A, Eden M. Fast B-spline Transforms for Continuous Image Representation and Interpolation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3):277-285.
  • 8Battiato S,et al. A Locally Adaptive Zooming Algorithm for Digital Images [J]. Image and Vision Computing, 2002,20:805-812.
  • 9Tsai R Y, Huang T S. Multiframe Image Restoration and Registration [A].Advances in Computer Vision and Image Processing[M]. 1984.317-339.
  • 10Kim S P,et al. Recursive Reconstruction of High Resolution Image from Noisy Undersampled Multiframe [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(6):1013-1027.

共引文献1

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部