摘要
通过分析系统不动点的稳定性,得到分数阶微分系统存在混沌的解析条件。以分数阶统一混沌系统为例,通过时域数值仿真实验,发现时域近似产生的仿真误差会产生对分数阶微分系统是否存在混沌的错误判断,并且误差影响会随参数k的增大而变大。
The analytical conditions that the fractional-order differential systems remain chaotic are obtained by analyzing the stability of the fixed points of the systems.Taking the fractional order unified chaotic systems as an example,the numerical simulations illustrate that the errors of time domain approximation can cause erroneous results about whether the fractional-order differential systems remain chaotic,and the effects of the approximation errors will become worsen with the system parameter k growing.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第29期202-204,222,共4页
Computer Engineering and Applications
关键词
分数阶微分系统
统一混沌系统
数值仿真
数值可靠性
fractional-order differential system
unified chaotic system
numerical simulation
numerical reliability