期刊文献+

分数阶混沌系统时域数值仿真及其可靠性分析 被引量:1

Time-domain numerical simulation of fractional-order chaotic systems and its reliability analysis
下载PDF
导出
摘要 通过分析系统不动点的稳定性,得到分数阶微分系统存在混沌的解析条件。以分数阶统一混沌系统为例,通过时域数值仿真实验,发现时域近似产生的仿真误差会产生对分数阶微分系统是否存在混沌的错误判断,并且误差影响会随参数k的增大而变大。 The analytical conditions that the fractional-order differential systems remain chaotic are obtained by analyzing the stability of the fixed points of the systems.Taking the fractional order unified chaotic systems as an example,the numerical simulations illustrate that the errors of time domain approximation can cause erroneous results about whether the fractional-order differential systems remain chaotic,and the effects of the approximation errors will become worsen with the system parameter k growing.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第29期202-204,222,共4页 Computer Engineering and Applications
关键词 分数阶微分系统 统一混沌系统 数值仿真 数值可靠性 fractional-order differential system unified chaotic system numerical simulation numerical reliability
  • 相关文献

二级参考文献48

  • 1蔡国梁,黄娟娟.超混沌Chen系统和超混沌Rssler系统的异结构同步[J].物理学报,2006,55(8):3997-4004. 被引量:71
  • 2李爽,徐伟,李瑞红,李玉鹏.异结构系统混沌同步的新方法[J].物理学报,2006,55(11):5681-5687. 被引量:32
  • 3Podlubny I 1999 Fractional Differential Equations (New York: Academic)
  • 4Hilfer R 2001 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
  • 5Bagley R L and Calico R A 1991 J. Guid. Contr. Dyn.14 304
  • 6Sun H H, Abdelwahad A A and Onaral B 1984 IEEE Trans. Auto. Contr. 29 44
  • 7Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. 33 253
  • 8Heaviside O 1971 Electromagnetic Theory (New York:Chelsea)
  • 9Laskin N 2000 Physica (Amsterdam) 287A 482
  • 10Kusnezov D, Bulgac A and Da, ng G D 1999 Phys. Rev.Lett. 82 1136

共引文献71

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部