期刊文献+

基于信息熵的电子装备软故障预报 被引量:2

Soft Failure Prediction of Electronic Equipment Based on Information Entropy Principle
下载PDF
导出
摘要 针对电子设备的故障识别提出了一种基于性能退化数据的缓变故障预报方法,以不同层次的可观测功能模块为基本的故障预测和定位单位,利用信息熵的概念建立性能检测数据波动趋势的信息模型,对模块进行功能故障预测。试验表明:熵可以比较准确地指明功能电路的软故障与器件老化,对以替换现场可更换单元为主要手段的电子装备原位维修与应急维修有重要的现实意义。 A model for electronic equipment gradual failure checking and prediction established through analyzing performance degradation data is proposed. The measurable functional module and circuit board of different levels are regarded as the basic failure units so as to setup information entropy model with dynamic trend of performance date. The tests indicate that information entropy could check the soft fault and device aging accurately, thus providing a convenient implementation approach especially suitable for on-site maintenance and emergency maintenance.
作者 郭亮
出处 《信息化研究》 2009年第9期4-6,共3页 INFORMATIZATION RESEARCH
关键词 软故障 性能退化 故障预报 信息熵 soft failure performance degradation fault prediction information entropy
  • 引文网络
  • 相关文献

参考文献5

  • 1张永强,冯静,刘琦,周经伦.基于Poisson-Normal过程性能退化模型的可靠性分析[J].系统工程与电子技术,2006,28(11):1775-1778. 被引量:13
  • 2陈敏泽,周东华.动态系统的故障预报技术[J].控制理论与应用,2003,20(6):819-824. 被引量:32
  • 3黄天常.信息熵的内涵与外延[J].陇东学院学报(自然科学版),2006,16(1):15-18. 被引量:16
  • 4CHAO M T. Degradation analysis and related topics: some thoughts and a review [ J ]. Proceedings of the National Science Council(ROC) , Part A: Physical Science and Engineering, 1999,23(5) :555-566.
  • 5SHAO Qizhuan, WANG Gang, LI Xiaohua, et al. Reliability analysis of data acquisition system in digital protection[ C ]// Proceedings of IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Aug 14-18, 2005, Dalian, China. Piscataway, N J, USA: IEEE, 2005:1-6.

二级参考文献50

  • 1项静恬.动态和静态数据处理[M].北京:气象出版社,1991.50-179.
  • 2[1]BEARD R V. Failure accommodation in linear systems through selfreorganization [ R]. Cambridge Massachusetts: Man Vehicle Lab,MIT, 1971.
  • 3[2]MEHRA R K, PESCHON J. An innovafon approach to fault detection and diagnosis in dynamics [J]. Automatica, 1971,7(5): 637 -640.
  • 4[3]WILLSKY A S. A survey of design methods for failure detection in dynamic systems [J]. Automatica, 1976,12(6): 601-611.
  • 5[4]HIMMELBLAU D M. Fault Detection and Diagnosis in Chemical and Petrochemical Process [ M]. Amsterdam: Elsevier Press, 1978.
  • 6[5]GERTLER J J. Survey of model based failure detection and isolation in complex plants [ J ]. IEEE Control Systems Magazine, 1988, 8(6) :3 - 11.
  • 7[6]ISERMANN R. Process fault detection based on modeling and estimation methods: a survey [J]. Automatica, 1984,20(4):387-404.
  • 8[7]FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results[J]. Automatica, 1990, 26(3):459-474.
  • 9[8]ISERMANN R. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper [J]. Automatica, 1993,29(4): 815 - 835.
  • 10[9]PATTON R, et al. Fault Diagnosis in Dynamic Systems [ M]. New York: Prentice Hall, 1989.

共引文献58

同被引文献5

引证文献2

二级引证文献1

;
使用帮助 返回顶部