期刊文献+

基于提升小波变换的模糊图像融合算法研究 被引量:4

Research of fuzzy image fusion algorithm based on lifting wavelet transform
下载PDF
导出
摘要 针对传统小波计算量大、实时性差的缺点,使用提升格式的小波进行图像融合,计算量明显减少,实时性也明显提高。在分析比较几种小波的基础上,选出一种更适合于图像分解的小波基。同时,针对低频和高频系数不同的情况选择不同的融合规则。从融合效果可以看出,采用该算法得到的模糊图像融合效果较好。 In this paper,in order to enhance the wavelet-based fuzzy image fusion algorithm,the shortcomings of large cal- culation and poor real-time of traditional wavelet are overcome, using the wavelet lifting scheme for image fusion, signifi- cantly reduces the computation ,the real-time is also markedly improved.Several wavelet basis are analyzed and compared, to select a more suitable wavelet basis for image decomposition.At the same time,so as to choose different fusion rules aiming at low-frequency and high-frequency coefficients for different circumstances.Effect can be seen from the fusion, the fuzzy image has better effect by using the algorithm.
出处 《电子设计工程》 2009年第10期77-78,81,共3页 Electronic Design Engineering
关键词 提升小波 图像融合 融合规则 小波基 lifting wavelet image fusion fusion rules wavelet basis
  • 相关文献

参考文献4

二级参考文献22

  • 1M.Lounsbery, T.D.DeRose, and J.Warren. Multiresolution surfaces of arbitrary topological type. Department of Computer Science and Engineering, University of Washington, 1993(10).
  • 2David L. Donoho. Interpolating Wavelet Transforms,Technical Report 408, Departmnet of Statistics, Stanford University, 1992.
  • 3David L.Donoho. On Minimum Entropy Segmentation,Wavelets: Theory, Algorithms and Applications (pp.233-269). San Diego: Academic Press. 1994.
  • 4Swildens, W.Schroder.P. Building your own wavelets at home. Technical Report 1995.5, Industrial mathematics Initiative. Department of Mathematics, University of South Carolina.
  • 5Swildeus. The lifting scheme: A custom-design construc-tion of biorthogonal wavelets. Appl. Comput.Harmon. Anal, 3(2): 186-200, 1996.
  • 6I.Daubechies and W.Sweldens. Factoring wavelet transforms into lifting steps. Technical report, Bell La-boratories, Lucent Technologies, 1996.
  • 7R.C.Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo. Wavelet Transforms that Map Integers to Integers, Applied and Computational Harmonic Analysis(ACHA), Vol. 5, Nr. 3, pp. 332-369, 1998.
  • 8Sweldens. The lifting scheme: A construction of second generation wavelets. SIAMJ. Math. Anal, 29(2): 511-546,1997.
  • 9Burt P J, Adelson E H. The laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications.1983, 31(4): 532-540.
  • 10Toet A. Image fusion by a ratio of low pass pyramid[J]. Pattern Recognition Letters. 1989, 9(4): 245-253.

共引文献34

同被引文献35

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部