期刊文献+

异步随机微粒群算法 被引量:2

Asynchronous Stochastic Particle Swarm Optimization
下载PDF
导出
摘要 在研究微粒群算法生物特征的基础上,提出了一种异步随机微粒群算法——ASPSO.该方法是在微粒的进化过程中,采用异步模式使全局最好位置信息以异步方式在种群中传播。从理论上证明了ASPSO与同步模式微粒群算法SPSO相比较具有更快的局部收敛速度,并对四个经典测试函数进行了仿真测试,测试结果表明:与SPSO相比,ASPSO算法具有更快的收敛速度。 Based on the biological characteristics of particle swarm optimization, an asynchronous stochastic particle swarm optimization(ASPSO) is proposed. In the evolution process of particles, using asynchronous pattern,the information of global best position can be asynchronously transmitted in the population. Then theoretical analysis has been made to prove that the local convergent rate of ASPSO is faster than the synchronous pattern algorithm SPSO. Moreover, the simulation tests of four classic functions have been done, and the test results show that:the ASPSO owns a faster convergence rate compared with the SPSO.
出处 《太原科技大学学报》 2009年第5期359-363,共5页 Journal of Taiyuan University of Science and Technology
关键词 微粒群算法 随机微粒群算法 异步模式 局部搜索 particle swarm optimization, stochastic particle swarm optimization, asynchronous pattern,local search
  • 相关文献

参考文献7

  • 1KWNNEDY J ,EBERHART RC. Particle Swarm Optimization[ C ]. Proc. Of the IEEE Conf. on Nerual Networks, IV. Piseataway, NJ : IEEE, Service Center, 1995.
  • 2F VAN DEN BERGH. An analysis of particle swarm optimizers[ D]. Pretoria: University of Pretoria,2001.
  • 3XIE XF,ZHANG WJ, YANG ZL. A dissipative particle swarm optimization[ C ]. Proc. of the IEEE Int'lConf. on Evolutionary Computation. Honolulu: IEEE Inc. ,2002.
  • 4TRELEA I C . The particle swarm optimization algo-Rithm: Convergence analysis and parameter selection [ J ]. Information Processing Letters,2003,95 ( 6 ) :317-325.
  • 5KOH B, GEORGE AD. Parallel asynchronous particle swarm optimization [ J ]. International Journal for Numerical Methods in Engineering,2006,67 : 578 -595.
  • 6WENTER G, SOBIESZCANSKIi-SOBIEKI J. A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations [ C ]. 6th world congresses of structural and multidisciplinary optimization, Rio de Janerio, Brazil,2005.
  • 7曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献157

同被引文献20

  • 1刘红星,肇莹,朱博,高敦堂.基于进化算法的优化平台设计[J].计算机工程与应用,2007,43(1):100-103. 被引量:3
  • 2龚薇华,王晨光,俞欢军.基于MVC模式和.NET的公司内部管理信息系统设计[J].计算机工程与设计,2007,28(9):2142-2144. 被引量:39
  • 3JAMES H, MICHAEL S. Multi-robot search using a physically-embedded Particle Swarm Optimization [ J ]. International Journal of Computational Intelligence Researoh,2008,4 (2) : 197-209.
  • 4NOUYAN S. Path Formation and Goal Search in Swarm Robotics [ R ]. Technical Report TR/IRIDIA/2004-14, Belgium:University Libre de Bruxelles,2004.
  • 5K SJO, DG LOPEZ, C PAUL, et al. Object Search and Localization for an Indoor Mobile Robot [ J]. Journal of Computing and Information Technology ,2009,17 ( 1 ) : 1-12.
  • 6PAUL E R, AMY L, HARINI V, MONICAL L, MARIA G. Communication strategies in Multi-Robot Search and Retrieval: Experiences with MinDART[ C ]//Proc Int'l Syrup on Distributed Autonomous Robotic Systems,2007:317-326.
  • 7J PUGI-I, A MARTINOLI. Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization [ C ]//Proceeding of the 4th IEEE Swarm Intelligence Symposium, USA: Hawaii Honolulu ,2007 : 1-5.
  • 8XUE S ,ZENG J. Controlling Swarm Robots for Target Search in Parallel and Asynchronously [ J]. International Journal of Modeling, Identification and Control, 2009,8 ( 4 ) : 353-360.
  • 9L BAYINDIR, E SSHIN. A Review of Studies in Swarm Robotics [ J ]. Turkish Journal of Electrical Engineering & Computer Sciences, 2007,15 (2) : 117-132.
  • 10KIM C H, JUNG H K, CHOI K C. An algorithm for multimodal function optimization based on evolution strategy [ J ]. IEEE Trans. Onmagnetics ,2004,40 (2) : 1224-1227.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部