期刊文献+

变分不等式的新的外梯度方法(英文) 被引量:8

A New Extragradient Method for Variational Inequalities
下载PDF
导出
摘要 本文引入了一个新的求解非扩张映射的不动点集和具有单调及Lipschitz连续映射的变分不等式的解集的公共元素的近似算法。这一算法是建立在外梯度方法和粘性逼近方法基础上的。在Hilbert空间上得到了这一算法产生序列的强收敛性定理。其内容如下:设C是实Hilbert空间H中的非空闭凸集,映射A∶C→H是单调和k-Lipschitz连续的,S∶C→H是非扩张映射满足Fix(S)∩VI(C,A)≠,其中Fix(S)和VI(C,A)分别是S的不动点集和变分不等式的解集,f∶H→H是压缩映射,序列{xn}和{yn}由下列算法产生的:x1=x∈Cyn=PC(xn-γnAxn)xn+1=αnf(xn)+βnxn+(1-αn-βn)SPC(xn-γnAyn),n=1,2,…,其中{γn},{αn}和{βn}是满足条件limn→∞αn=0和∑n∞=1αn=∞,1>limn→s∞upβn≥limn→∞infβn>0和nl→im∞γn=0的数列,则{xn}和{yn}强收敛到w=PFix(S)∩VI(C,A)f(w),这里PFix(S)∩VI(C,A)f(w)表示f(w)在Fix(S)∩VI(C,A)上的投影。本文结果推广了文献中的一些著名结果。 In this paper, we introduce a new approximation scheme based on the extragradient method and viscosity method for finding a common element of the set of solutions of the set of fixed points of a nonexpansive mapping and the set of the variational inequality for a monotone, Lipschitz continuous mapping. We obtain a strong convergence theorem for the sequences generated by these processes in Hilbert spaces as follows : Let C be a nonempty closed convex subset of a real Hilbert space H. Let .4 be a monotone and k-Lipschitz continuous mapping of C into H. Let S be a nonexpansive )napping of C into H such that Fix(S)∩VI(C,A)≠Ф, where Fix(S) and VI(C,A) , respectively, denote the set of fixed point of S and the solution set of a variational inequality. Letf be a contraction of H into itself and { xn } and { yn } be sequences generated by {x1=x∈C γn=Pc(xn-γnAxn) xn+1=αnf(xn)+βnxn+(1-αn-βn)SPc(xn-γnAγn)for every n=1,2,…,where{γ},{αn} and {βn}are sequences of numbers salisfying limαn n→∞=0 and ∑n=1^∞αn=∞,1〉lim n→∞ sup βn≥lim n→∞ inf βn〉0 and limγn n→∞=0.Then,{xn} and {yn} converge strongly to w=PFix(S)∩VI(C,A)f(w).The results in this paper improves some well-known results in the literature.
作者 彭建文
出处 《重庆师范大学学报(自然科学版)》 CAS 2009年第4期9-16,共8页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10771228,No.10831009) 重庆师范大学科研项目(No.08XLZ05)
关键词 变分不等式 外梯度方法 非扩张映射 单调映射 粘性逼近方法 收敛性定理 variational inequality extragradient method nonexpansive mapping monotone mapping viscosity method strong convergence
  • 相关文献

参考文献17

  • 1Goebel K, Kirk W A. Topics on metric fixed-point theory [ M ]. Cambridge, England: Cambridge University Press, 1990.
  • 2Moudafi A. Viscosity approximation methods for fixed-point problems [ J].J Math Anal Appl,2000,241:46-55.
  • 3Xu H K. Viscosity approximation methods for nonexpansive mappings[ J]. J Math Anal Appl,2004,298:279-291.
  • 4Takahashi W, Toyoda M. Weak convergence theorems for nonexpansive mappings and monotone mappings [ J ]. J Optim Theory Appl,2003,118 (2) :417-428.
  • 5Korpelevich G M. The extragradient method for finding saddie points and other problems[J]. Matecon, 1976,12:747- 756.
  • 6He B S, Yang Z H, Yuan X M. An approximate proximal-extragradient type method for monotone variational inequalities [ J ]. J Math Anal Appl, 2004,300 : 362-374.
  • 7Gatrciga Otero R, Iuzem A. Proximal methods with penalization effects in Banach spaces [ J]. Numer Funct Anal Optim,2004,25:69-91.
  • 8Solodov M V, Svaiter B F. An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions [ J ]. Math Oper Res, 2000,25 : 214- 230.
  • 9Solodov M V. Convergence rate analysis of iteractive algorithms for solving variatinal inequality problem [ J ]. Math Program ,2003,96:513-528.
  • 10Zeng L C,Yao J C. Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems [ J ]. Taiwan J Math, 2006,10 : 1293- 1303.

同被引文献92

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部