期刊文献+

用无偏估计方法计算简支梁的频响函数 被引量:1

Using Unbiased Estimation Method to Calculate Frequency Response Functions of Simply Supported Beams
下载PDF
导出
摘要 利用不相关信号的互功率谱多次平均趋于零的性质,推导出多输入多输出频响函数无偏估计算法,用MATLAB语言编制了该无偏估计算法的程序。使用动态信号测试系统进行了简支梁的多点激励和多点响应的振动测试,并利用MATLAB程序对实测信号进行了计算,得到了测试对象的频响函数。利用有限元方法计算测试对象的频响函数,对多输入多输出频响函数无偏估计算法进行了验证。 A multi-input and multi-output unbiased frequency response function (MMUFRF) estimation is put forward based on the feature that the mean of the incorrelate signal CSD ( Cross Spectral Density) tends to zero. The proposed method is realized by MATLAB programming. Two-input and fouroutput test is carried on using the dynamic signal test systems and its MMUFRF is acquired by MATLAB program. Meanwhile, numerical simulation of the frequency response functions is made by means of finite element method. The simulation results show that the proposed MMUFRF can correctly estimate the frequency response functions of real structures.
出处 《噪声与振动控制》 CSCD 北大核心 2009年第5期47-49,135,共4页 Noise and Vibration Control
基金 国家自然科学基金重点项目(编号:59835170)
关键词 振动与波 模态分析 频响函数 功率谱 vibration and wave mode analysis frequency response function PSD
  • 相关文献

参考文献7

二级参考文献17

  • 1张桂才,赵万镒.幅值立方法──一种新的齿轮故障信号预处理方法[J].机械传动,1994,18(3):10-13. 被引量:2
  • 2林砺宗.传递函数的无偏差测量法[J].振动.测试与诊断,1989,9(3):16-20. 被引量:7
  • 3李岳锋 吕民富.多输入-多输出频响函数估计[J].航空学报,1986,7(8):596-603.
  • 4雷继尧 蒋和生 等.结构模态分析中的频响函数新估计方法.振动分析与测试技术,1987,19(2):28-33.
  • 5Ewins D J. Modal testing :theory and practice. Lon-don:Research Studies Press Ltd, 1984.
  • 6Wu Y X, Huang G J, Duan J,et al. Quasi-3D dynamic finite element model for rolling mills. In: Proceeding of Asia-Pacific Vibration Conference 2001. Hangzhou,China, 2001.
  • 7Richardson M H, Formenti D L. Parameter estimation from frequency response measurements using ra-tional fraction polynomials[A]. The First International Modal Analysis Conference [C]. Orlando, FL November, 1982:167-181.
  • 8Richardson M H, Formenti D L. Global curve fitting of frequency response measurements using the rational fraction polynomial method [A]. The Third International Modal Analysis Conference [C]. Orlando, FL January, 1985:390-397.
  • 9Newman N D, Friswell M I, Penny J E T. The parallel implementation of the rational fraction polynomial method[A]. The Eleventh International Modal Analysis Conference[C]. Florida, USA. February, 1993: 318-324.
  • 10Heylen W, Lammens S, Sas P. Modal analysis theory and testing [M]. Belgium: Katholieke Universiteit Leuven Press, 1998:9-14.

共引文献16

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部